SUFFICIENT CONDITIONS FOR. THE SOLVABILITY AND SUPERSOLVABILITY IN FINITE GROUPS

Mohamed ASAAD*
Cairo University, Faculty of Science, Mathematics Department, Egypt

Communicated by H. Bass
Received 5 January 1984

Let r be a natural number. A subgroup H of a finite group G is called an r minimal subgroup of G if there is a chain of subgroups $1=H_{0} \leq H_{1} \leq \cdots \leq H_{r}=H$ with each H_{i} is maximal in H_{i+1}. Naturally an r-minimal subgroup H of G can be also an m-minimal subgroup for $m \neq r$. In [1], N.S. Narasimha and W.E. Deskins said that a group G is a PN- r group if each r-minimal subgroup of G is normal. They showed that PN-r groups are solvable of fitting length ai most r for $r=2$ and 3. They also obtained results about PN-4 groups.

Let G be a finite group of even order. Then by definition

$$
\begin{aligned}
H_{r}= & \{H<G \mid H \text { is of even order and }|H| \text { is the product of } r \\
& \text { primes not necessarily distinct }\} .
\end{aligned}
$$

We say that G is an $\mathscr{H}_{r}-\mathrm{N}$ group if each element of H_{r} is normal in G.
Let G be a finite group of odd order. Let p be the smallest prime in $\pi(G)$. Then by definition

$$
\begin{aligned}
K_{2}^{\prime}= & \{H<G \mid p \text { divides }|H| \text { and }|H| \text { is the product of two primes } \\
& \text { not necessarily distinct }\} .
\end{aligned}
$$

A group G is a $\pi_{2}-\mathrm{N}$ group if each elernent of π_{2} is normal in G.
Our notation is standard and is taken mainly from [2]. All groups considered are assumed to be finite.

The object of this paper is to prove the following theorems:
Theorem 1. Suppose that each subgroup of order p^{2} is normal in G for every prime divisor p of $|G|$ except perhaps the largest. Then either G possesses a Sylow tower or A_{4} is involved in G.
G possesses a Sylow tower, that is to say there is a series $1=G_{0}<G_{1}<\cdots<G_{n}=G$

[^0]of normal subgroups of G such that for each $i=i, 2, \ldots, n, G_{i} / G_{i-1}$ is isomorphic to a p_{i}-Sylow subgroup of G, where $p_{\mathrm{i}}, p_{2}, \ldots, p_{n}$ are the distinct prime divisors of $|G|$ and $p_{1}>p_{2}>\cdots>p_{n}$. A familiar consequence of the supersolvability of G is that G possesses a Sylow tower [4, p. 716, VI.9.1].

For the proof of Theorem 1 we need the following definition: A group G is called a (p, q)-group if:
(a) The order of G involves only the prime factors p and q.
(b) G is not nilpotent and all its proper subgroups are nilpotent.
(c) The derived group G^{\prime} is the p-Sylow subgroup of G.

We refer the reader to [4, p. 281, Theorem 5.2] for the standard prop ties of a (p, q)-group.

The following lemma is an immediate consequence of Ito's Theorem [4, p. 434, Theorem 5.4]. So the proof will be omitted here.

Lemma 1. Let p be a fixed prime in $\pi(G)$. Then G possesses a normal p-complement iff G contains no (p, q)-subgroup $\forall q \in \pi(G)$ with $q \neq p$.

Theorem 1 is an immediate consequence of the following lemma:
Lemma 2. Suppose that each subgroup of order p^{2}, where p is the smallest prime in $\pi(G)$, is normal in G. Then G has a normal p-complement or A_{4} is involved in G.

Proof. Let G be a counterexample. Then, by Lemma 1, G contains a (p, q) subgroup K. Since A_{4} is not involved in K, then $|P|=p^{n}$, where $P \in \operatorname{Syl}_{p}(K)$ and $n \geq 3$. Now, we shall make use of the properties of minimal nonnilpotent groups to be found in [3] (see also [4, p. 281, III.5.2]). Clearly P contains a subgroup H of order p^{2}. So the hypothesis of the lemma implies that $H \triangleleft G$ and consequently $H \triangleleft K$. If $P^{\prime}=1$, then K / H would be nilpotent. But then K would itself be nilpotent, a contradiction. Thus $P^{\prime} \neq 1$. We have tha $P^{\prime}=Z(P)$ is elementary abelian.

If $p=2$, then $\operatorname{Exp} P=4$. Hence there exists an element x of P of order 4 such that $x \notin P^{\prime}$. The hypothesis of the lemma implies that $\langle x\rangle \triangleleft G$ and consequently $\langle x\rangle \triangleleft K$. Set $L=\langle x\rangle P^{\prime}$. If $L=P$, then $P / P^{\prime} \cong\langle x\rangle /\langle x\rangle \wedge P^{\prime}=\langle x\rangle /\langle x\rangle \wedge Z(P)$. Now it follows that $\left|P / P^{\prime}\right|=2$ and this is impossible. Thus $L<P$. Obviously, $L \triangleleft K$. Now the structure of K yields K / L must be nilpotent. But then K would itself be nilpotent, a contradiction.

Now, we may assume that $p \neq 2$. Exp $P=p$ and $P^{\prime} \neq 1$. Then P contains an element $x \notin P^{\prime}$. It is clear that $|x|=p$. Then x lies in a subgroup H of P of order p^{2}. Hence $H \nsubseteq P^{\prime}$. If $L=P$, then $\left|P / P^{\prime}\right|=p$ and this is impossible. Thus $L<P$. Now the structure of K yields K / L must be nilpotent. But then K would itself be nilpotent, a contradiction.

Theorem 2. If G is an $\mathscr{H}_{2}-\mathrm{N}$ group and A_{4} is not involved in G, then G is supersolvable.

Proof. Let $S \in \operatorname{Syl}_{2}(G)$. Suppose that $|S|=2$. Then G has a normal 2 -complement (Theorem 4.3 of [2, p. 252]). Now Theorem 2.2 of [2, p. 224] implies that for each prime $p \neq 2, S$ leaves invariant some p-Sylow subgroup of G. Hence there exists a Hall subgroup H of order $2 p^{n}$, where $p \in \pi(G)$. Theorem 7.2 .15 of [5, p. 158] implies that H is supersolvable. Then H possesses a subgroup $H_{1}=S\langle y\rangle$ of order $2 p$. Since G is an $H_{2}-\mathrm{N}$ group, $H_{1} \triangleleft G$. Now Frattini argument yields $G=$〈 $y\rangle N_{G}(S)$. Set $N=N_{G}(S)$. Once again Theorem 7.2 .15 of [5, p. 158] implies that we may assume $\pi(N)$ contains an odd prime $r \neq p$. Let $z \in N$ such that $|z|=r$. Since G is an $H_{2}-\mathrm{N}$ group, $\langle z\rangle S \triangleleft G$. Since S char $\langle z\rangle S \triangleleft G, S \triangleleft G$. Let x be an arbitrary element of G of odd prime order. Since G is an $\psi_{2}-\mathrm{N}$ group, $\langle x\rangle S \triangleleft G$. Since $\langle x\rangle \operatorname{char}\langle x\rangle S \triangleleft G,\langle x\rangle \triangleleft G$. Thus G is a PN-1 group. Now Theorem 2 of [6] implies that G is supersolvable.

Now we may assume that $|S|=2^{n}$, where $n \geq 2$. Let x be an element of order 2 . Then x lies in a subgroup H of G of order 4 . Since G is an $H_{2}-\mathrm{N}$ group, $H \triangleleft G$. Let y be an element of odd prime order. Since A_{4} is not involved in $G,[H, y]=1$ and $[x, y]=1$. Since $\langle x\rangle \operatorname{char}\langle x\rangle\langle y\rangle \triangleleft G$ and $\langle y\rangle \operatorname{char}\langle x\rangle\langle y\rangle \triangleleft G$, it follows that $\langle x\rangle \triangleleft G$ and $\langle y\rangle \triangleleft G$. Thus, G is a PN-1 group. We conclude therefore from Theorem 2 of [6] and Lemma 2 that G is supersolvable.

The proof of our next result is similar to that of Theorem 2. So the proof will be omitted here.

Theorem 3. If G is an $\mathscr{K}_{2}-\mathrm{N}$ group and $q \equiv 1(\bmod p)$ for some prime $q \in \pi(G)$, then G is supersolvable.

Theorem 4. If G is an $H_{2}-\mathrm{N}$ group, then G^{\prime} is nilpotent.
Proof. Let S be a 2-Sylow subgroup of G. If $|S|=2$, then G is supersolvable (see first paragraph of proof of Theorem 2). Now Theorem 9.1 of [4, p. 716] implies that G^{\prime} is nilpotent. Once again Theorem 2 implies that $3 \| G \mid$.

Now we may assume that $|S|=2^{n}$, where $n \geq 2$. Either $|\pi(G)| \geq 3$ or $\mid \pi(G)=2$. If $|\pi(G)| \geq 3$, let y be an element of prime order p, where $p \neq 2$ and $p \neq 3$. Let x be an element of order 2 . Then x lies in a subgroup H of order 4 . Since G is an $\psi_{2}-\mathrm{N}$ group, $H \triangleleft G$. Hence $[H, y]=1$ and $[x, y]=1$. Since $\langle x\rangle$ char $\langle x\rangle\langle y\rangle \triangleleft G$ and $\langle y\rangle \operatorname{char}\langle x\rangle\langle y\rangle \triangleleft G,\langle x\rangle \triangleleft G$ and $\langle y\rangle \triangleleft G$. Let z be an element of order 3. Since $\langle x\rangle\langle z\rangle \triangleleft G$ and $\langle z\rangle \operatorname{char}\langle x\rangle\langle z\rangle$, it follows that $\langle z\rangle \triangleleft G$. It is clear that $G^{\prime} \leq C_{G}(\langle x\rangle)$ for any element x of order 4 . Now we have $G^{\prime} \leq C_{G}(\langle x\rangle)$ for any element x of order 4 or a prime. By Theorem 5.5 of [4, p. 435], it follows that G^{\prime} is nilpotent. If $|\pi(G)|=2$, then $|G|=2^{n} 3^{m}$. Hence G is solvable (Theorem 7.3 of [4, p. 492]. Let L be a minimal normal subgroup of G. Clearly L is elementary abelian. Suppose that $|L|=3^{b}$. Let x be an element of order 2. Then x lies in a normal subgroup H of order 4. Let y be an element of L of order 3. Then $[H, L]=1$ and $[x, y]=1$. Since $\langle x\rangle \operatorname{char}\langle x\rangle\langle y\rangle \triangleleft G,\langle x\rangle \triangleleft G$. Let z be an element of G of order 3 .

Since $\langle z\rangle \operatorname{char}\langle x\rangle\langle z\rangle \varangle G,\langle z\rangle \triangleleft G$. Now, we have $G^{\prime} \leq C_{G}(\langle x\rangle)$ for any element x of order 4,2 or 3 and consequently G^{\prime} is nilpotent. Hence, we may assume that $|L|=2^{a}$. Since G is an $\mathscr{H}_{2}-\mathrm{N}$ group and L i a minimal normal subgroup, $|L|=2$ or 4. If $|L|=2$, then $G^{\prime} \leq C_{G}(\langle x\rangle)$ for every element x or order 4,2 or 3 and consequently G^{\prime} is nilpotent. Assume that $|L|=4$. We argue that L is the 2-Sylow subgroup of G. Suppose false. Then G contains a subgroup $K>L$ of order 2^{3}. Since L is elementary abelian, K contains a maximal subgroup $L_{1} \neq L$. Since G is an \mathscr{H}_{2}-group, $L_{1} \triangleleft G$. But now $L_{1} \wedge L$ is a normal subgroup of G of order 2 , contradicting the minimality of L. Thus L is the 2-Sylow subgroup of G. If $3 \| C_{G}(L) \mid$, then $G^{\prime} \leq C_{G}(\langle x\rangle)$ for every element x of order 4,2 and 3 and consequently G^{\prime} is nilpotent. Hence $L=C_{G}(L)$. Now it follows easily that $G \cong A_{4}$ and consequently G^{\prime} is nilpotent.

Theorem 5. If G is an $\kappa_{2}-\mathrm{N}$ group, then G^{\prime} is nilpotent.
Proof. Let F be a p-Sylow subgroup of G, where p is the smallest odd prime in $\pi(G)$. Suppose that $|P|=p$. Set $N=N_{G}(P)$. If $P<N$, then N contains an element y of prime order $q \neq p$. Since G is an $\kappa_{2}^{\prime}-\mathrm{N}$ group, $\langle y\rangle P \triangleleft G$. Since P char $P\langle y\rangle \triangleleft G$, $P \triangleleft G$. Now, it follows that G is a PN-1 group. By Theorem 5.3 of [4, p. 283], G^{\prime} is nilpotent. Hence we may assume that $P=N$. Thus G is a Frobenius group wi九t complement P and kernel K. Theorem 3.1 of [2, p. 339] implies that K is nilpotent. Now, it follows easily that G^{\prime} is nilpotent.

Suppose that $|P|=p^{n}$, where $n \geq 2$. Let x be an element of order p. Then x lies in a normal subgroup H of order p^{2}. Let y be an element of prime order $q \neq p$. Theorem 4.3 of $[2$, p. 252] implies that $[H, y]=1$ and $[x, y]=1$. Since $\langle x\rangle \operatorname{char}\langle x\rangle\langle y\rangle \triangleleft G$ and $\langle y\rangle \operatorname{char}\langle x\rangle\langle y\rangle \triangleleft G$, it follows that $\langle x\rangle \triangleleft G$ and $\langle y\rangle \triangleleft G$. Thus G is a PN- 1 group. Once again Theorem 5.3 of [4, p. 283] implies that G^{\prime} is nilpotent.

In [1], Narasimha and Deskins proved that if G is a $\mathrm{PN}-2$ group, then G^{\prime} is nilpotent. Theorems 4 and 5 generalize this result.

Lemma 3. If H_{3} is empty, then $|G|$ is the product of at most three primes not necessarily distinct.

Proof. Assume that G is no: a 2 -group. It is clear that if G is a 2 -group, then $|G| \leq 2^{3}$. Let S be a 2 -Sylow subgroup of G. Since \mathscr{H}_{3} is empty, $|S| \leq 4$.

If $|S|=2$, then $G=S K$, where K is a normal subgroup of G of odd order (Theorem 4.3 of [2, p. 252]). Theorem 2.2 of [2, p. 224] implies that for each prime $p \neq 2, S$ leaves invariant some p-Sylow subgroup of G. Hence if there exists a p Sylow subgroup P of G of order p^{n}, where $n \geq 2$, then G contains a Hall subgroup L of order $2 p^{n}$. Theorem 7.2 .15 of [5, p. 158] implies that L is supersolvable. Theorem l of [7, p. 279] implies that L contains a subgroup L_{1} of order $2 p^{2}$. Since \mathscr{H}_{3} is empty, $|G|=\left|L_{1}\right|=2 p^{2}$. Now we may assume that K is of square free order. It follows easily that $|G|=2 p$ or $2 p q$, where $2, p$ and q are distinct primes.

Suppose that $|S|=4$. Since ψ_{3} is empty, $N_{G}(S)=C_{G}(S)=S$. Thus, $G=S K$. where K is a normal subgroup of G of odd order. It is clear that G contains a subgroup L of order $2|K|$. The preceding paragraph implies that $|L|=2 p$ or $2 p q$, where $2, p$ and q are distinct primes. Since $\#_{3}$ is empty and $L<G,|L|=2 p$ and consequently $|G|=2^{2} p$.

Theorem 6. If G is $n . H_{3}-\mathrm{N}$ group, then G^{\prime} is nilpotent.
Proof. Let G be a counterexample. Let S be a 2 -Sylow subgroup of G. Set $\left\{S \mid=2^{\prime \prime}\right.$, where $n \geq 1$.

Case 1. Suppose that $n=1$. By Theorem 4.3 of [2, p. 252], G has a normal 2 -complement and so $2 \nmid\left|G^{\prime}\right|$. If $S \triangleleft G$, then G / S is an $\hbar_{2}-\mathrm{N}$ group. By Theorem $5(G / S)^{\prime}=G^{\prime} S / S \cong G^{\prime} / G^{\prime} \wedge S=G^{\prime}$ is nilpotent, a contradiction. Thus, S is not normal subgroup of G. It is very well known that if G is of square free order, then G is supersolvable, and consequently G^{\prime} is nilpotent. Since G^{\prime} is not nilpotent, so G contains a p-Sylow subgroup P of order $p^{\prime \prime \prime}$, where $m \geq 2$ and $p \neq 2$. Since G has a normal 2-complement, Theorem 2.2 of [2, p. 224] implies that for each prime $p \neq 2, S$ leaves invariant some p-Sylow subgroup of G. Thus there exists a Hall subgroup H of order $2 p^{m}$, where $m \geq 2$. Now, Theorem 7.2 .15 of [5, p. 158] implies that H is supersolvable. Then H possesses a subgroup L of order $2 p^{2}[\%$, Theorem 1, p. 279]. Let P_{1} be a p-Sylow subgroup of L. Since G is an $*_{3}-\mathrm{N}$ group, $L \triangleleft G$. Now Frattini's argument yields $G=P_{1} N_{G}(S)$. Let r be an odd prime such that $r\left|\left|N_{G}(S)\right|\right.$. If $\left.r^{2}\right|\left|N_{G}(S)\right|$, then $N_{G}(S)$ contains a subgroup M of order $2 r^{2}$. Since G is an $\#_{3}-\mathrm{N}$ group, $M \triangleleft G$ and consequently $S \triangleleft G$, a contradiction. Thus $N_{G}(S)$ is of square free order. If $\left|\pi\left(N_{G}(S)\right)\right| \geq 3$, then $N_{G}(S)$ contains a subgroup K of order $2 r_{1} r_{2}$, where $2, r_{1}$ and r_{2} are distinct primes. Since G is an $\pi_{3}-\mathrm{N}$ group, $K \triangleleft G$, a contradiction. Thus $\left|\pi\left(N_{G}(S)\right)\right| \leq 2$. Since G^{\prime} is not nilpotent and $\left|\pi\left(N_{G}(S)\right)\right| \leq 2$, we have $\left|N_{G}(S)\right|=2 r$, where $2, r$ and p are distinct primes. Now, it follows easily that $|G|=2 r p^{2}$ and consequently G^{\prime} is nilpotent, contradiction.

Case 2. Suppose that $n=2$. We argue that S is not a normal subgroup of C. Suppose false. Then Theorem 2.1 of [2, p. 221] implies that there exists a \therefore. complement K of $G, K \cong G / S$. It is clear that K is a PN-1 roup. Now Theorem 5.3 of [4, p. 283] implies that $(G / S)^{\prime}=G^{\prime} S / S \cong G^{\prime} / G^{\prime} \wedge S$ is nilpotent. Let x be an element of G of order a prime p, where $p \neq 2$ and $p \neq 3$. Theorem 4.3 of [2, p. 252] implies that $S\langle x\rangle=S \times\langle x\rangle$. Since G is an $H_{3}-\mathrm{N}$ group, $S\langle x\rangle \triangleleft G$ and consequently $\langle x\rangle \triangleleft G$. But now $G /\langle x\rangle$ is an $\mathscr{H}_{2}-\mathrm{N}$ group. Theorem 4 implies that $(G /\langle x\rangle)^{\prime}=$ $G^{\prime}\langle x\rangle /\langle x\rangle \cong G^{\prime} / G^{\prime} \wedge\langle x\rangle$ is nilpotent. Since G^{\prime} is not nilpotent and $\langle x\rangle=p$, $G^{\prime} / G^{\prime} \wedge\langle x\rangle=G^{\prime} /\langle x\rangle$. But $G^{\prime} /\left(G^{\prime} \wedge S\right) \wedge\langle x\rangle \widetilde{\subset} G^{\prime} / G^{\prime} \wedge S \times G^{\prime} /\langle x\rangle$, so G^{\prime} is nilpotent, a contradiction. Hence $\pi(G)=\{2,3\}$. If $C_{G}(S):=G$, then $S \leq Z(G)$ and consequently G is nilpotent, a contradiction. Thus $C_{G}(S)<G$. Let x be an element of $C_{G}(S)$ of order 3. Then, $S\langle x\rangle=S \times\langle x\rangle$. Since G is an $\psi_{3}-\mathrm{N}$ group, $S\langle x\rangle \triangleleft G$ and consequently $\langle x\rangle \triangleleft G$. Since $G^{\prime} /\langle x\rangle$ and $G^{\prime} / G^{\prime} \wedge S$ are nilpotent, G^{\prime} is nilpotent, a contradiction. Hence $C_{G}(S)=S<G$. Clearly S is elementary abelian. Since $G / C_{G}(S) \widetilde{C} \operatorname{Aut}(S)$,
$|\operatorname{Aut}(S)|=6, C_{G}(S)=S$ and $\pi(G)=\{2,3\}$, it follows that $G \cong A_{4}$ and consequently G^{\prime} is nilpotent, a contradiction. Thus S is not a normal subgroup of G. Set $N=N_{G}(S)$. If $S<N$, then N contains an element x of order a prime $p \neq 2$. Since G is an $\mathscr{H}_{3}-\mathrm{N}$ group, $\langle x\rangle S \triangleleft G$. Since S char $S\langle x\rangle \triangleleft G, S \triangleleft G$, a contradiction. Hence $N=S=C_{G}(S)$. Now, Theorem 4.3 of [2, p. 252] implies that G has a normal 2-complement and consequently A_{4} is not involved in G. Suppose that $S \wedge S^{x} \neq 1$ for some $x \in G-N$. Then $S \wedge S^{x}=\langle y\rangle$, where $|y|=2$. Set $N_{1}=N_{G}(\langle y\rangle)$. If $N_{1}=G$, then $\langle y\rangle \triangleleft G$. Since G is an $⿻_{3}-\mathrm{N}$ group, $G /\langle y\rangle$ is an $\#_{2}$-group. Theorem 2 implies that $G /\langle y\rangle$ is supersolvable and consequently G is supersolvable. Now, Theorem 9.1 of [4, p. 716] implies that G^{\prime} is nilpotent, a contradiction. Thus $\langle y\rangle$ is not a normal subgroup of G. It is clear that N_{1} contains an odd prime r. Let z be an element of N_{1} of order r. Obviously N_{1} is solvable. Since $\langle y\rangle$ is not a normal subgroup and G is an \mathscr{H}_{3}-group, it follows that $r \| N_{1} \mid$. Since N_{1} is solvable, N_{1} contains a Hall subgroup $L=S_{1}\langle z\rangle$, where $\left|S_{1}\right|=4$ and $|z|=r$ (Theorem 4.1 of [2, p. 231]). Since G is an $\varkappa_{3}-\mathrm{N}$ group, $L \triangleleft G$. Since G has a normal 2-complement, $\langle z\rangle$ char L. Since $\langle z\rangle$ char $L \triangleleft G,\langle z\rangle \triangleleft G$. But then $G /\langle z\rangle$ is an . $⿻_{2}-\mathrm{N}$ group. Now, Theorem 2 implies that $G /\langle z\rangle$ is supersolvable and consequently G is supersolvable. Hence G^{\prime} is nilpotent, a contradiction. Thus $S \wedge S^{x}=1$ for each element $x \in G-N$. Now, it follows that G is a Frobenius group with complement S and kernel K. Theorem 3.1 of [2, p. 339] implies that K is abelian. Now, it follows easily that G^{\prime} is abelian, a contradiction.

Case 3. Suppose that $n \geq 3$. Let G denote a counterexample of least possible order. Lemma 3 and our choice of G imply that each proper subgroup of G is solvable. Let L be a minimal normal subgroup of G. Now it follows easily that $L<G$ and L is an elementary abelian p-group for some prime p (Theorem 1.5 of [2, p. 17]). Suppose that $p \neq 2$. Let S_{1} be a subgroup of S of order 2^{3}. Since G is an $\mathscr{H}_{3}-\mathrm{N}$ group, $S_{1} \triangleleft G$. Let $y \in L$. Let S_{2} be a maximal subgroup of S_{1}. Since $\left[S_{1}, L\right]=1,\left[S_{2}, y\right]=1$. Since G is an $H_{3}^{\prime}-N$ group, $S_{2} \times\langle y\rangle \triangleleft G$. Since $\langle y\rangle \operatorname{char}\langle y\rangle S_{2} \triangleleft G$ and $S_{2} \operatorname{char}\langle y\rangle S_{2} \triangleleft G,\langle y\rangle \triangleleft G$ and $S_{2} \triangleleft G$. It is clear that G / S_{2} is a $\mathrm{PN}-1$ group. Theorem 5.7 of $[4$, p. 436] implies that

$$
\left(G / S_{2}\right)^{\prime}=G^{\prime} S_{2} / S_{2} \cong G^{\prime} / G^{\prime} \wedge S_{2}=S^{*} / G^{\prime} \wedge S_{2} \cdot K / G^{\prime} \wedge S_{2}
$$

where $S^{*} / G^{\prime} \wedge S_{2}$ is a normal 2-Sylow subgroup of $G^{\prime} / G^{\prime} \wedge S_{2}$ and $K / G^{\prime} \wedge S_{2}$ is nilpotent subgroup of $G^{\prime} / G^{\prime} \wedge S_{2}$ of odd order. Now, it follows that G^{\prime} / S^{*} is nilpotent. Since G is an $\pi_{3}-\mathrm{N}$ group, it follows that $G /\langle y\rangle$ is an $\mathscr{H}_{2}-\mathrm{N}$ group. Theorem 4 implies that $(G /\langle y\rangle)^{\prime}$ is nilpotent. Since G^{\prime} is not nilpotent and $|y|=p$, $(G /\langle y\rangle)^{\prime}=G^{\prime} /\langle y\rangle$. Since G^{\prime} / S^{*} and $G^{\prime} /\langle y\rangle$ are nilpotent, G^{\prime} is nilpotent, a contradiction. Thus we must have $p=2$. Since L is a minimal normal subgroup of G and G is an $H_{3}-\mathrm{N}$ group, $|L| \leq 2^{3}$.

Subcase l. Suppose that $|L|=2$. Then G / L is an $\mathscr{H}_{2}-\mathrm{N}$ group. Theorem 4 implies that $(G / L)^{\prime}=G^{\prime} L / L$ is nilpotent. Since G^{\prime} is not nilpotent and $|L|=2$, it follows that G^{\prime} / L is nilpotent. Since G^{\prime} / L is nilpotent and $|L|=2$, it follows that G^{\prime} is nilpotent, a contradiction.

Subcase 2. Suppose that $|L|=4$. Since G is an $\#_{3}-\mathrm{N}$ group, G / L is a $\mathrm{PN}-1$ group. Theorem 5.7 of [4, p. 436] implies that

$$
(G / L)^{\prime}=G^{\prime} L / L \cong G^{\prime} / G^{\prime} \wedge L=S^{*} / G^{\prime} \wedge L \cdot M / G^{\prime} \wedge L
$$

where $S^{*} / G^{\prime} L^{\prime}$ is a normal 2-Sylow subgroup of $G^{\prime} / G^{\prime} \wedge L$ and $M / G^{\prime} \wedge L$ is a nilpotent subgroup of $\Gamma^{\prime} / G^{\prime} \wedge L$ of odd order. Now, it follows that G^{\prime} / S^{*} is nilpotent. Let x be an element of G of order a prime p, where $p \neq 2$ and $p \neq 3$. Since G is an H $_{3}$-group, $L\langle x\rangle \triangleleft G$. By Theorem 4.3 of [2, p. 252], $L\langle x\rangle=L \times\langle x\rangle$. Since $\langle x\rangle \operatorname{char}\langle x\rangle L \triangleleft G,\langle x\rangle \triangleleft G$. Since G is an $H_{3}-\mathrm{N}$ group, $G /\langle x\rangle$ is an $\psi_{2}-\mathrm{N}$ group. Theorem 4 implies that $(G /\langle x\rangle)^{\prime}=G^{\prime}\langle x\rangle /\langle x\rangle \cong G^{\prime} / G^{\prime} \wedge(x\rangle$ is nilpotent. Since $G^{\prime} / G^{\prime} \wedge\langle x\rangle=G^{\prime} /\langle x\rangle$. Since G^{\prime} / S^{*} and $G^{\prime} /\langle x\rangle$ are nilpotent, G^{\prime} is nilpotent, a contradiction. Thus, $\pi(G)=\{2,3\}$. Set $C=C_{G}(L)$. Suppose tha: $3 \mid C_{C_{i}}(L)=C$. Then C contains an element y of order 3. Since $L\langle y\rangle=L \times\langle y\rangle \triangleleft G,\langle y\rangle \triangleleft G$. Now we have that $G^{\prime} /\langle y\rangle$ and G^{\prime} / S^{*} are nilpotent, so G^{\prime} is nilpotent, a contradiction. Thus, $3 \nmid|C|$. Since $G / C \subsetneq \operatorname{Aut}(L)$ and $3 \nmid|C|$, it follows that $|G|=2^{3}$. 3 . Let S be a 2-Sylow subgroup of G. since G is an $\#_{3}-\mathrm{N}$ group, $S \triangleleft G$. Since $G=2^{2} \cdot 3$ and $S \triangleleft G, G^{\prime}$ is nilpotent, a contradiction.

Subcase 3. Suppose that $|L|=2^{3}$. We argue that L is a 2 -Sylow subgroup of G. Suppose false. Then there exists a subgroup $L^{*}>L$ of order 2^{4}. Since L is elementary abelian, L^{*} contains a maximal subgroup $L_{1} \neq L$. Since G is an $\#_{3}-\mathrm{N}$ group, $L_{1} \triangleleft G$. It follows that $L_{1} \wedge L$ is a normal subgroup of G of order 4 , contradicting the minimality of L. Thus L is a 2-Sylow subgroup of G. Set $C=C_{G}(L)$. Let y the an element of C of order a prime p, where $p \neq 2$. Let K be a maximal subgroup of L. Since $[L, y]=1,[K, y]=1$. Since G is an $\#_{3}-N$ group, $K\langle y\rangle \triangleleft G$. Since K char $K\langle y\rangle \triangleleft G, K \triangleleft G$, contradicting the minimality of L. Thus $C=C_{G}(L)=l$. Since $G / C \nsubseteq \operatorname{Aut}(L) \cong G L(3,2)$ and $|G L(3,2)|=168$ and $C=L$, it follows thit $|G|=24,56$ or 168 . Since G^{\prime} is not nilpotent, $|G| \neq 24$ or 56 . Since G is an $\pi_{3}-N$ group and G^{\prime} is not nilpotent, it follows that $|G| \neq 168$. This contradiction completes the proof of the theorem.

In [1], Narsimha and Deskins proved that if G is a PN-3 group, then G is solvable and Feit $(G) \leq 3$.

For the proof of the next lemma, see [4, Theorem 8.27 (Dickson), p. 213].
Lemma 4. Set $G \cong L_{2}(q)$, where q is an odd prime power and $q \equiv 3,5(\bmod 8)$. Assume that H_{4} is empty. Then
(1) $G \cong L_{2}(5) \cong A_{5}$, or
(2) $G \cong L_{2}(p)$, where p is a prime such that $p-1$ and $p+1$ are products of at most 3 primes, $p \equiv 3,5(\bmod 8)$ and $p^{2}-1 \neq 0(\bmod 5)$, or
(3) $G \cong L_{2}(q)$, where $q=3^{2 n+1}$ such that $q-1$ and $q+1$ are products of at most 3 primes ard $q \equiv 3,5(\bmod 8)$.

We shall prove the following result:

Theorem 7. if G is $n . \mathscr{H}_{4}-\mathrm{N}$ group, then one of the following holds:
(i) G is solvable, or
(ii) G is isomorphic to (1) or (2) or (3) in the statement of Lemma 4.

Proof. Let G be a counterexample. Let S be a 2 -Sylow subgroup of G. Set $|S|=2^{n}, n \geq 1$.
Case 1 . Suppose that $n \geq 4$. Let H be a subgroup of S of order 2^{4}. Since G is an $\pi_{4}-\mathrm{N}$ group, $H \triangleleft G$. If H is non-abelian, then $|Z(H)|=2$ or 4 . Since G is an $\psi_{4}-\mathrm{N}$ group, $G / Z(H)$ is either an $\pi_{3}-\mathrm{N}$ group or an $\pi_{2}-\mathrm{N}$ group. Now, Theorems 6 and 4 yield that $G / Z(H)$ is solvable and consequently G is solvable, a contradicton. Thus, H is non-abelian. If H is cyclic, let L be a subgroup of H of order 4. Since L char $H \triangleleft G, L \triangleleft G$. Since G / L is an $H_{2}-\mathrm{N}$ group, G / L is solvable and consequently G is solvable, a contradiction. Thus, H is non-cyclic abelian. We argue that $S=H$. Suppose false. Then there exists a subgroup $S_{1}>H$ of order 2^{5}. Since S_{1} is non-cyclic, there exists a maximal subgroup K of S_{1} such that $H \neq K$. Since G is an $\#_{4}-\mathrm{N}$ group, $K \triangleleft G$.

Now, it follows easily that $H \wedge K$ is a normal subgroup of G of order 2^{3}. Hence, $G / H \wedge K$ is a $\mathrm{PN}-1$ group. By Theorem 5.7 of [4, p. 436], $G / H \wedge K$ is solvalbe and consequently G is solvable, a contradiction. Thus $H=S$. Here we shall not make use of the Feit-Thompson Theorem [8]. It is clear that we have four types of nonisomorphic non-cyclic abelian groups:

$$
\left(2^{2}, 2^{2}\right), \quad\left(2,2^{3}\right), \quad\left(2,2,2^{2}\right) \quad \text { and }(2,2,2,2)
$$

Suppose that S is not elementary abelian. Then $\Omega_{1}(S)$ is elementary abelian of order 4 or 8 . Clearly, $\Omega_{1}(S) \triangleleft G$. Since G is an $H_{4}-\mathrm{N}$ group, $G / \Omega_{1}(S)$ is either an . $\psi_{2}-\mathrm{N}$ group or a PN-1 group. Thus, $G / \Omega_{2}(S)$ is solvable, and consequently G is solvable, a contradiction. Now, we may assume that S is elementary abelian. Let y be an element of $C_{G}(S)$ of prime odd order. Then $[S, y]=1$. let S_{1} be a maximal subgroup of S. Then, $\left[S_{1}, y\right]=1$. Since G is an $\pi_{4}-\mathrm{N}$ group, $S_{1}\langle y\rangle \triangleleft G$ and consequently, $S_{1} \triangleleft G$. Since G / S_{1} is a PN-1 group, G / S_{1} is solvable and consequently G is solvable, a contradiction. Thus, $C_{G}(S)=S$. Since $G / C_{G}(S) \subsetneq \operatorname{Aut}(S)$ and $|\operatorname{Aut}(S)|=2^{6} \times 3^{2} \times 5 \times 7$ and $C_{G}(S)=S$, it follows that $|G| /|S| \mid 3^{2} \times 5 \times 7$. Now, it follows easily that G is solvable, a contradiction.

Case 2. Suppose that $n=3$. Set $N=N_{G}(S)$. If $S \triangleleft G$, then G / S is a PN-1 group. Hence, G / S is solvable and consequently G is solvable, a contradiction. Thus, $N<G$. If $S<N$, let y be an element of N of prime odd order. Since G is an $\mathscr{H}_{4}-\mathrm{N}$ group, $S\langle y\rangle \triangleleft G$ and consequently $S \triangleleft G$, a contradiction. Thus $N=S$. We argue that S_{4} is not involved in G. Suppose false. Then, there exist subgroups $H>K$ such that $H / K \cong S_{4}$. If $3 \dagger|K|$, then the Schur-Zassenhaus Theorem implies that $H=K L$, where $L \cong S_{4}$. Since G is an $\#_{4}-\mathrm{N}$ group, $L \triangleleft G$. Now Frattini's argument yields that $G=L N_{G}(S)=L \cong S_{4}$, a contradiction. Thus $3 \| K \mid$. Let Q be a 3-Sylow subgroup of K. If $|Q|=3$, let L / K be a subgroup of H / K of order 2^{3}. It is clear that L has a normal 2 -complement and consequently L contains a Hall subgroup
L_{1} of order $2^{3} 3$. Let S_{1} be a 2-Sylow subgroup of L_{1}. Let Q_{1} be a 3-Sylow subgroup of L_{1}. Since G is an ψ_{4}-group, $L_{1}=S_{1} Q_{1} \triangleleft G$ and consequently $Q_{1} \triangleleft G$. Since G / Q_{1} is an $H_{3}-\mathrm{N}$ group, G / Q_{1} is solvable and consequently G is solvable, a contradiction. Thus $|Q| \neq 3$. Suppose that $|Q|=3^{2}$. Let L / K be a subgroup of H / K of order 4. Then L contains a Hall subgroup L, of order $2^{2} 3^{2}$. Now it follows easily that $S_{1} \triangleleft L_{1}$ or $Q_{1} \triangleleft L_{1}$, where S_{1} and Q_{1} are 2-and 3-Sylow subgroups of L_{1}, respectively. Since G is an $\pi_{4}-\mathrm{N}$ group, $L_{1} \triangleleft G$. Hence either $S_{1} \triangleleft G$ or $Q_{1} \triangleleft G$. Thus G / S_{1} is an $\pi_{2}-\mathrm{N}$ group or G / Q_{1} is an $\psi_{2}-\mathrm{N}$ group. This is a contradiction. Now suppose that $|Q|=3^{n}$, where $n \geq 3$. Let L / K be a subgroup of G / K of order 2 . Since L has a normal 2 -complement, L contains a Hall subgroup L_{1} of order 23^{n}. Since L_{1} is supersolvable, L_{1} contains a subgroup L_{2} of order 23^{3}. Let S_{2} be a 2 -Sylow subgroup of L_{2}. Let Q_{2} be a 2-Sylow subgroup of L_{2}. Since G is an $H_{4}-\mathrm{N}$ group, $L_{2} \triangleleft G$ and consequently $Q_{2} \triangleleft G$. Now, it follows that each element of G / Q_{2} of order 2 is normal. This is a contradiction as S_{4} contains a dihedral group of order 8 . Thus S_{4} is not involved in G. Now a Theorem of Glauberman [9] implies that G has a normal 2 -complement, i.e. $G=S K$, where K is a normal subgroup of G of odd order. Let y be an element of S of order 2 . Set $G_{1}=\langle y\rangle K$. Suppose that q is a prime divisor of $|K|$ with multiplicity at least 3 . It is clear that G_{1} contains a Hall subgroup L_{1} of order $2 q^{n}$, where $n \geq 3$. Since L_{1} is supersolvable, L_{1} contains a subgroup L_{2} of order $2 q^{3}$. Since G is an $\psi_{4}-\mathrm{N}$ group, $L_{2} \triangleleft G$. Now Frattini's argument yields that if $G=L_{2} N_{G}(\langle y\rangle) /\langle y\rangle$ is an $H_{3}-\mathrm{N}$ group, then $N_{G}(\langle y\rangle)$ is solvable. Hence G is solvable, a contradiction. Thus each prime divisor of $|K|$ appears with multiplicity at most 2 . Now by a very well known result in the literature it follows that K possesses a Sylow tower and consequently K is solvable. Since $G / K \cong S$, and K is solvable, G is solvable, a contradiction.

Case 3. Suppose that $n=2$. If $S \triangleleft G$, then $G / S \cong K$ is a $n_{2}-\mathrm{N}$ group. Now Theorem 5 implies that K is solvable, a contradiction. Thus $N_{G}(S)<G$. It follows from the proof of Case 2 that if G has a normal 2 -complement, G is solvable. Thus G has not a normal 2 -complement. Now Burnside's Theorem implies that $C_{G}(S)<N_{G}(S)$. Now it follows easily that $C_{G}(S)=S$. Let $\mathrm{O}(G)$ be the largest normal subgroup of odd order in the group G. By Theorem 2.1 of [2, p. 421], $G / \mathrm{O}(G)$ is isomorphic to $L_{2}(q), q \equiv 3,5(\bmod 8)$. We argue that $\mathrm{O}(G)=1$. Suppose false. Let $L / \mathrm{O}(G)$ be a subgroup of $G / \mathrm{O}(G)$ of order 2 . It is clear that L has a normal 2-complement. Hence if $q^{3}| | O(G) \mid$ for some prime divisor q of $O(G)$, then L contains a Hall subgroup L_{1} of order $2 q^{n}$, where $n \geq 3$. Since L_{1} is supersolvable. there exists a subgroup L_{2} of L_{1} of order $2 q^{3}$. Since G is an ${ }_{4}-\mathrm{N}$ group, $L_{2} \triangleleft G$, contradicting the simplicity of $G / O(G)$. Thus each prime divisor of $O(G)$ appears with multiplicity at most 2 . Hence $\mathrm{O}(G)$ possesses a Sylow tower. Let P be a p Sylow subgroup of $\mathrm{O}(G)$, where p is the largest prime in $\pi(\mathrm{O}(G))$. Then $P \triangleleft G$. Clearly $|P|=p$ or p^{2}. Hence G / P is an $H_{3}-\mathrm{N}$ group or an $\pi_{2}-\mathrm{N}$ group, a contradiction. Thus $\mathrm{O}(G)=1$. Now Lemma 4 yields that G is isomot phic to (1) or (2) or (3), a contradiction.

Case 4. Suppose that $n=1$. Then $G=S K$, where K is a normal subgroup of G of odd order. Suppose that there exists a prime divisor q of $|K|$ which appears with multiplicity at least 3. Hence G contains a subgroup L of order $2 q^{3}$. Since G is an $\psi_{4}-4$ group, $L \triangleleft G$. Let y be an element of L of order 2 . Frattini's argument yields that $G=L N_{G}(\langle y\rangle)$. It is clear that $N=\langle y\rangle \times L_{1}$, where L_{1} is a normal subgroup of N of odd order. If $\langle y\rangle$ is not a normal subgroup of G, then $\left|L_{1}\right|$ is the product of at most 2 primes and consequently G is solvable, a contradiction. Thus $\langle y\rangle=S \triangleleft G$. let Q be the q-Sylow subgroup of L. Then $Q \triangleleft G$. Let Q_{1} be a subgroup of Q of order q^{2}. If Q is cyclic, then $Q_{1} \triangleleft G$. Hence G / Q_{1} is an $\mathscr{H}_{2}-\mathrm{N}$ group, a contradiction. Thus, Q is not cyclic. We argue that Q is the q-Sylow subgroup of G. Suppose false. Then there exists a subgroup $H>Q$ of order q^{4}. Since H is not cyclic, H contains a maximal subgroup Q_{0} such that $Q_{0} \neq Q$. Since G is an $\mathscr{H}_{4}-\mathrm{N}$ group, $\langle y\rangle Q_{0} \triangleleft G$ and consequently $Q_{0} \triangleleft G$. It follows that $Q_{0} \wedge Q$ is a normal subgroup of G of order q^{2}. Thus $G / Q_{0} \wedge Q$ is an $\mathscr{H}_{2}-\mathrm{N}$ group, a contradiction. Thus Q is a normal q-Sylow subgroup of G. If there exsts a prime divisor $r \neq q$ of $|K|$ which appears with multiplicity at least 3 , then $R \triangleleft G$, where R is an r-Sylow subgroup of G of order r^{3}. Now it follows easily that $S Q R$ is a normal nilpotent subgroup of G. Let K be a subgroup of $S Q R$ of order $2 r q^{2}$. Let Q_{1} be the q-Sylow subgroup of K. Since G is an $\mathscr{H}_{4}-\mathrm{N}$ group, $Q_{1} \triangleleft G$. But then G / Q_{1} is an $\mathscr{H}_{2}-\mathrm{N}$ group, a contradiction. Thus q is the only prime divisor of $|K|$ appearing with multiplicity 3 . Now the Schur-Zassenhaus Theorem implies that $K / Q \cong K_{1}$, where K_{1} is a subgroup of K and $K=Q_{1} K_{1}$. Now, it follows that K_{1} possesses a Sylow tower as each prime divisor of $\left|K_{1}\right|$ appears with multiplicity at most 2 . Thus K_{1} is solvable and consequently K is solvable, a contradiction. Therefore, each prime divisor of $\lceil K \mid$ appears with multiplicity at most $?$.. Thus K is solvable, a final contradiction.

It was proved in Janko [10] that if G is a finite non-abelian simple group all of whose chains of subgroups have length at most 4 , then G is isomorphic to $L_{2}(p)$ for some prime $p>3$. This result follows at once from Theorem 7 .

References

[1] N.S. Narasimha and W.E. Deskins, Influence of normality conditions on almost minimal subgroups of a finite group, J. Algebra 52 (1978) 364-377.
[2] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
[3] L. Rèdei, Die endlichen einstufig nichtnilpotenten Gruppen, Publ. Math. Debrecen 4 (1956) 303-324.
[4] B. Huppert, Endliche gruppen 1 (Springer, Berlin, 1967).
[5] W.R. Scott, Group Theory (Prentice-Hall, Englewood Cliffs, NJ, 1964).
[6] R.W. Van der Waal, On minimal subgroups which are normal, J. Reine Angew. Math. 285 (1976) 77-78.
[7] D.H. McClain, The existence of subgroups of given order in finite groups, Proc. Cambr. Phil. Soc. 53 (1957) 278-285.
[8] W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
[9] G. Glauberman, Subgroups of finite groups, Bull. Amer. Math. Soc. 73 (1967) 1-12.
[10] Z. Janko, Finite groups with invariant fourth maximal subgroups, Math Z. 82 (1963) 82-89.

[^0]: * Current address: Dept. of Mathematics, College of Education, Madinah Munawwarah, Saudi Arabia.

