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Let r be a natural number. A subgroup H of a finite group G is called an r-
minimal subgroup of G if there is a chain of subgroups | =Hy<H,<:---<H,=H
with each H; is maximal in H,_,. Naturally an r-minimal subgroup H of G can be
also an m-minimal subgroup for m#r. In [1], N.S. Narasimha and W.E. Deskins
said that a group G is a PN-r group if each r-minimal subgroup of G is normal.
They showed that PN-r groups are solvable of fitting length ai most r tor r=2 and
3. They also obtained results about PN-4 groups.

Let G be a finite group of even order. Then by definition

#,={H<G|H is of even order and |H| is the product of r
primes not necessarily distinct}.

We say that G is an .#,-N group if each element of .7, is normal in G.
Let G be a finite group of odd order. Let p be the smallest prime in 7(G). Then
by definition
#y={H<G|p divides |H| and |H| is the product of two primes
not necessarily distinct}.

A group G is a .#,-N group if each elernent of .#, is normal in G.

Our notation is standard and is taken mainly from [2]. All groups considered are
assumed to be finite.

The object of this paper is to prove the following theorems:

Theorem 1. Suppose that each subgroup of order p* is normal in G for every prime
divisor p of |G| except perhaps the largest. Then either G possesses a Sylow tower

or A, is involved in G.

G possesses a Sylow tower, that is to say there is a series 1 =G,< G, <---<G,=G
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of normal subgroups of G such that for each i=i,2,...,n,G,;/G;_, is isomorphic to
a p;-Sylow subgroup of G, where p;, p, ..., p, are the distinct prime divisors of
|G| and p,>p,>-->p,. A familiar consequence of the supersolvability of G is
that G possesses a Sylow tower [4, p. 716, VI.9.1].

For the proof of Theorem 1 we need the following definition: A group G is called
a (p, q)-group if:

(a) The order of G involves only the prime factors p and q.

(b) G is not nilpotent and all its proper subgroups are nilpotent.

(c) The derived group G’ is the p-Sylow subgroup of G.

We refer the reader to [4, p. 281, Theorem 5.2] for the standard prop: “ties of a
(p, q)-group.

The following lemma is an immediate consequence of Ito’s Theorem [4, p. 434,
Theorem 5.4]. So the proof will be omitted here.

Lemma 1. Ler p be a fixed prime in n(G). Then G possesses a normal p-complement
iff G contains no ( p,q)-subgroup Vqe n(G) with q#p.

Theorem 1 is an immediate consequence of the following lemma:

Lemma 2. Suppose that each subgroup of order p*, where p is the smallest prime

in n(G), is normal in G. Then G has a normal p-complement or A, is involved in
G.

Proof. Let G be a counterexample. Then, by Lemma 1, G contains a (p,q)-
subgroup K. Since A, is not involved in K, then |P|=p", where Pe Syl,(K) and
n=3. Now, we shall make use of the properties of minimal nonnilpotent groups to
be found in [3] (see also [4, p. 281, 111.5.2]). Clearly P contains a subgroup H of
order p®. So the hypothesis of the lemma implies that H<G and consequently
H<K. If P'=1, then K/H would be nilpotent. But then K would itself be nilpotent,
a contradiction. Thus P'#1. We have tha P'=Z(P) is elementary abelian.

If p=2, then Exp P=4. Hence there exists an element x of P of order 4 such that
x ¢ P’. The hypothesis of the lemma implies that {(x) <G and consequently {x) <K.
Set L={x)P’. If L=P, then P/P'={x)/{x)ANP'={x)/{x)NZ(P). Now it follows
that |P/P’| =2 and this is impossible. Thus L < P. Obviously, L < K. Now the struc-
ture of K yields K/L must be nilpotent. But then K would itself be nilpotent, a
contradiction.

Now, we may assume that p#2. Exp P=p and P’#1. Then P contains an ele-
ment x & P’. It is clear that |x|=p. Then x lies in a subgroup H of P of order p>.
Hence H« P’. If L = P, then |P/P’|=p and this is impossible. Thus L < P. Now the

structure of K yields K/L must be nilpotent. But then K would itself be nilpotent,
a contradiction.

Theorem 2. If G is an 73,-N group and A, is not involved in G, then G is
supersolvable.
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Proef. Let SeSyl,(G). Suppose that |S|=2. Then G has a normal 2-complement
(Theorem 4.3 of [2, p. 252]). Now Theorem 2.2 of [2, p. 224] implies that for cach
prime p#2, S leaves invariant some p-Sylow subgroup of G. Hence there exists a
Hall subgroup H of order 2p”", where pen(G). Theorem 7.2.15 of [5, p. 158]
implies that H is supersolvable. Then H possesses a subgroup H, = S( ) of order
2p. Since G is an .#,-N group, H,<G. Now Frattini argument vyields G =
(PING(S). Set N=N;(S). Once again Theorem 7.2.15 of [5, p. 158] implies that
we may assume 7n(N) contains an odd prime r#p. Let ze N such that [z|=r.
Since G is an .#5-N group, (z)S<G. Since Schar(z)S<G, S<G. Let x be an
arbitrary element of G of odd prime order. Since G is an .#>-N group, (x)S<G.
Since (x) char{x)S <G, <x)<G. Thus G is a PN-1 group. Now Theorem 2 of [6]
implies that G is supersolvable.

Now we may assume that |S|=2", where n=>2. Let x be an element of order 2.
Then x lies in a subgroup H of G of order 4. Since G is an #,-N group, H<G. Let
y be an element of odd prime order. Since 4, is not involved in G, [H, v] =1 and
[x, y] = 1. Since {x) char{x){ y) <G and ( y) char{x){ y) <G, it follows that (x)<G
and ( y)<G. Thus, G is a PN-1 group. We conclude therefore from Theorem 2 of
[6] and Lemma 2 that G is supersolvable.

The proof of our next result is similar to that of Theorem 2. So the proof will
be omitted here.

Theorem 3. If G is an .¥,-N group and g=1 (mod p) for some prime q € n(G), then
G is supersolvable.

Theorem 4. If G is an .#5-N group, then G' is nilpotent.

Proof. Let S be a 2-Sylow subgroup of G. If |S|=2, then G is supersolvable (see
first paragraph of proof of Theorem 2). Now Theorem 9.1 of [4, p. 716} implies
that G’ is nilpotent. Once again Theorem 2 implies that 3||G]|.

Now we may assume that |S|=2", where n=2. Either {n(G)!=3 or 'n(G) =2.
If |n(G)|=3, lety be an element of prime order p, where p#2 and p#3. Let x
be an element of order 2. Then x lies in a subgroup H of order 4. Since G is an
#5-N group, H<G. Hence [H, y]=1 and [x, y] =1. Since (x) char{x){»><G and
(y) char{(xX y)<G, (x)<1G and (y)<G. Let z be an element of order 3. Since
(xXz)<4G and (z) char{x)z), it follows that (z)<G. It is clear that G'< C;({x))
for any element x of order 4. Now we have G’'< C;({x)) for any element x of order
4 or a prime. By Theorem 5.5 of [4, p. 435], it follows that G’ is nilpotent. If
|n(G)|=2, then |G|=2"3". Hence G is solvable (Theorem 7.3 of [4, p. 492]..
Let L be a minimal normal subgroup of G. Clearly L is elementary abelian.
Suppose that |L|=3°. Let x be an element of order 2. Then x lies in a normal
subgroup H of order 4. Let y be an elernent of L of order 3. Then [H,L]=1 and
[x, y] =1. Since {x) char{x} y)<G, {(x)<1G. Let z be an element of G of order 3.
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Since {z) char{x}z) <G, () <G. Now, we have G'< C;({x)) for any element x of
order 4, 2 or 3 and consequently G’ is nilpotent. Hence, we may assume that
|L|=2“ Since G is an .#3-N group and L i a minimal normal subgroup, |L|=2 or
4. If 'L|=2, then G'<Cg({x)) for every element x or order 4, 2 or 3 and conse-
quently G’ is nilpotent. Assume that |L|=4. We argue that L is the 2-Sylow
subgroup of G. Suppose false. Then G contains a subgroup K> L of order 2°.
Since L is elementary abelian, K contains a maximal subgroup L,;#L. Since G is
an .#;-group, L; <G. But now L;AL is a normal subgroup of G of order 2, contra-
dicting the minimality of L. Thus L is the 2-Sylow subgroup of G. If 3||Cs;(L)],
then G’'< Cs({x)) for every element x of order 4, 2 and 3 and consequently G’ is
nilpotent. Hence L = C;(L). Now it follows easily that G= A, and consequently G’
is nilpotent.

Theorem S. If G is an .¥,-N group, then G’ is nilpotent.

Proof. Let P be a p-Sylow subgroup of G, where p is the smallest odd prime in
n(G). Suppose that |P|=p. Set N=Ng(P). If P<N, then N contains an elemeni
y of prime order g+#p. Since G is an .¥,-N group, ( y)P<1G. Since P char P{y)<G,
P<G. Now, it follows that G is a PN-1 group. By Theorem 5.3 of [4, p. 283], G
is nilpotent. Hence we may assume that P=N. Thus G is a Frobenius group wi.»
complement P and kernel K. Theorem 3.1 of [2, p. 339] implies that K is nilpotent.
Now, it follows easily that G’ is nilpotent.

Suppose that |P| =p”", where n=2. Let x be an element of order p. Then x lies in a
normal subgroup H of order p°. Let y be an element of prime order q+#p. Theorem
4.3 of [2, p. 252] implies that [H, y] =1 and [x, y] = 1. Since {x) char{x){ y)< G and
{y)char{x} y}<G, it follows that (x)<G and {y)<G. Thus G is a PN-1 group.
Once again Theorem 5.3 of [4, p. 283] implies that G’ is nilpotent.

In [1], Narasimha and Deskins proved that if G is a PN-2 group, then G’ is nil-
potent. Theorems 4 and 5 generalize this result.

Lemma 3. If .73 is empty, then |G| is the product of at most three primes not
necessarily distinct.

Proof. Assume that G is no: a 2-group. It is clear that if G is a 2-group, then
|G|=<2’. Let S be a 2-Sylow subgroup of G. Since .7; is empty, |S!=<4.

If |§|=2, then G=SK, where K is a normal subgroup of G of odd order
(Theorem 4.3 of [2, p. 252]). Theorem 2.2 of [2, p. 224] implies that for each prime
P#2, § leaves invariant some p-Sylow subgroup of G. Hence if there exists a p-
Sylow subgroup P of G of order p”, where n=2, then G contains a Hall subgroup
L of order 2p". Theorem 7.2.15 of [5, p. 158] implies that L is supersolvable.
Theorem 1 of [7, p. 279] implies that L contains a subgroup L, of order 2p?. Since
3 is empty, |G|=|L,|=2p* Now we may assume that X is of square free order.
It follows easily that |G |=2p or 2pq, where 2, p and g are distinct primes.
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Suppose that |S|=4. Since .73 is empty, N;(S)=C;(S)=S. Thus, G=SK,
where K is a normal subgroup of G .of odd order. It is clear that G contains a
subgroup L of order 2|K|. The preceding paragraph implies that |L|=2p or 2pq,
where 2, p and q are distinct primes. Since .#; is empty and L <G, |L|=2p and
consequently |G |=2p.

Theorem 6. If G is n .#y-N group, then G’ is niipotent.

Proof. Let G be a counterexample. Let S be a 2-Sylow subgroup of G. Set |Si=2",
where n=>1.

Case 1. Suppose that n=1. By Theorem 4.3 of [2, p. 252], G has a normal
2-complement and so 21|G’|. If S<G, then G/S is an .#,-N group. By Theorem
S (G/SY=G'S/S=G'/G'AS=G" is nilpotent, a contradiction. Thus, S is not
normal subgroup of G. It is very well known that if G is of square free order, then
G is supersolvable, and consequently G’ is nilpotent. Since G’ is not nilpotent, so
G contains a p-Sylow subgroup P of order p", where m=2 and p #2. Since G has
a normal 2-complement, Theorem 2.2 of [2, p. 224] implies that for each prime
p#2, S leaves invariant some p-Sylow subgroup of G. Thus there exists a Hall
subgroup H of order 2p™, where m=2. Now, Theorem 7.2.15 of [5, p. 158] im-
plies that H is supersolvable. Then H possesses a subgroup L of order 2p~ [7,
Theorem 1, p. 279]. Let P, be a p-Sylow subgroup of L. Since G is an .#;-N group,
L <G. Now Frattini’s argument yields G =P, N;(S). Let r be an odd prime such
that r||Ng(S)|. If r*||Ng(S)|, then Ng(S) contains a subgroup M of order 2r-.
Since G is an .#3-N group, M <G and consequently S <G, a contradiction. Thus
Ng(S) is of square free order. If |7(N;(S))|=3, then N;(S) contains a subgroup
K of order 2r,r,, where 2, r; and r, are distinct primes. Since G is an .»;-N group,
K<G, a contradiction. Thus |n(Ng(S))|<2. Since G’ is not nilpotent and
|T(Ng(S))| <2, we have |Ng(S)|=2r, where 2, r and p are distinct primes. Now,
it follows easily that |G |=2rp? and consequently G’ is nilpotent, contradiction.

Case 2. Suppose that n=2. We argue that S is not a normal subgroup of G.
Suppose false. Then Theorem 2.1 of [2, p. 221] implies that there exists a -
complement K of G, K=G/S. It is clear that K is a PN-1 roup. Now Theorem 3.3
of [4, p. 283] implies that (G/S)’'=G’S/S=G’/G'AS is nilpotent. Let x be an
element of G of order a prime p, where p#2 and p#3. Theorem 4.3 of [2, p. 252]
implies that S{x)=Sx{x). Since G is an .#;-N group, S{(x)<G and consequently
(x)<1G. But now G/{x) is an #;-N group. Theorem 4 implies that (G/(x)) =
G'(x)/{(xy=G'/G'N{x) is nilpotent. Since G’ is not nilpotent and {(x)=p,
G'/G'NxY=G'/{x). But G'/(G'AS)Nx)CG'/G'AS X G'/{x), so G’ is nilpotent, a
contradiction. Hence n(G)={2,3}. If C;(S)=G, then $<Z(G) and consequently
G is nilpotent, a contradiction. Thus C;(S)< G. Let x be an element of C;(S) of
order 3. Then, S{x)= S x{x). Since G is an .#;-N group, S(x) <G and consequently
(x)<1G. Since G'/{x) and G'/G’AS are nilpotent, G’ is nilpotent, a contradiction.
Hence C;(S)=S<G. Clearly S is elementary abelian. Since G/C;(S)C Aut(S),
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|Aut(S)| =6, C;(S)=S and n(G) ={2, 3}, it follows that G= A4, and consequently
G’ is nilpotent, a contradiction. Thus S is not a normal subgroup of G. Set
N=Ng(S). If S<N, then N contains an element x of order a prime p#2. Since G
is an .#3-N group, (x)S<G. Since Schar S{(x)<G, S§<G, a contradiction. Hence
N=8=C;(S). Now, Theorem 4.3 of [2, p. 252] implies that G has a normal
2-complement and consequently A, is not involved in G. Suppose that SAS'#1 for
some x€ G— N. Then SAS*={(y), where | y|=2. Set N, =Ng(( ). If N; =G, then
{¥)»<G. Since G is an .#3-N group, G/{») is an .#5-group. Th2orem 2 implics that
G/{ y) is supersolvable and consequently G is supersolvable. Now, Theorem 9.1 of
[4, p. 716] implies that G’ is nilpotent, a contradiction. Thus { y) is not a normal
subgroup of G. It is clear that N, contains an odd prime r. Let z be an element of
N; of order r. Obviously N, is solvable. Since ( y) i1s not a normal subgroup and
G is an .#3-group, it follows that r||N,|. Since N, is solvable, N, contains a
Hall subgroup L =8,(z), where [S,;|=4 and |z| =r (Theorem 4.1 of [2, p. 231]).
Since G is an .»3-N group, L <G. Since G has a normal 2-complement, {z) char L.
Since (z) char L <G, (2)<G. But then G/(z) is an .#5-N group. Now, Theorem 2
implies that G/{z) is supersolvable and consequently G is supersolvable. Hence G’
is nilpotent, a contradiction. Thus SAS*=1 for each element xe G— N. Now, it
follows that G is a Frobenius group with complement S and kernel K. Theorem 3.1
of {2, p. 339] implies that K is abelian. Now, it follows easily that G’ is abelian, a
contradiction.

Case 3. Suppose that n=3. Let G denote a counterexample of least possible
order. Lemma 3 and our choice of G imply that each proper subgroup of G
is solvable. Let L be a minimal normal subgroup of G. Now it follows easily
that L <G and L is an elementary abelian p-group for some prime p (Theorem
1.5 of [2, p. 17]). Suppose that p#2. Let S, be a subgroup of S of order 2°.
Since G is an .#3-N group, S,<G. Let yelL. Let S, be a maximal subgroup of
S;. Since [Sy,L]=1, [S;,y]=1. Since G is an .73;-N group, S, >{y)<G. Since
(y)char({y)S, <G and S, char{ y)S, <G, {(¥y)<G and S,<G. It is clear that G/S,
is @ PN-1 group. Theorem 5.7 of [4, p. 436] implies that

(G/S,))'=G'S,/S,=G'/G'NS,; =S*/G'\S,- K/G'AS,,

where $*/G’AS, is a normal 2-Sylow subgroup of G'/G'AS, and K/G’AS, is nil-
potent subgroup of G'/G’AS, of odd order. Now, it follows that G’/S* is nil-
potent. Since G is an #3-N group, it follows that G/{y) is an .75-N group.
Theorem 4 implies that (G/{ y))’ is nilpotent. Since G’ is not nilpotent and | y| =p,
(G/{y»)=G'/{yy. Since G'/S* and G'/{y) are nilpotent, G’ is nilpotent, a con-
tradiction. Thus we must have p=2. Since L is a minimal normal subgroup of G
and G is an .#3-N group, |L|<2’.

Subcase 1. Suppose that |L|=2. Then G/L is an .#3-N group. Theorem 4 implies
that (G/L) =G'L/L is nilpotent. Since G’ is not nilpotent and |L|=2, it follows
that G'/L is nilpotent. Since G'/L is nilpotent and |L| =2, it follows that G’ is nil-
potent, a contradiction.
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Subcase 2. Suppose that |L|=4. Since G is an #;-N group, G/L is a PN-1
group. Theorem 5.7 of [4, p. 436] implies that

(G/LY=G'L/L=G"/G'NL=S*/G'ANL-M/G'AL

where S*/G’L is a normal 2-Sylow subgroup of G'/G’'AL and M/G’AL is a nil-
potent subgroup of 73'/G’'AL of odd order. Now, it follows that G’/S* is nilpotent.
Let x be an element of G of order a prime p, where p#2 and p#3. Since G 1s
an .¥y-group, L{(x)<G. By Theorem 4.3 of [2, p. 252], L{x)=L x{x). Since
(x> char{x)L € G, {x><G. Since G is an .#3-N group, G/{x) is an .#--N group.
Theorem 4 implies that (G/{x))'=G(x)/{x)=G’'/G'A{x) is nilpotent. Since
G'/G'Nx)=G"/{x). Since G'/S* and G'/{x) are nilpotent, G’ is nilpotent, & con-
tradiction. Thus, n(G)={2,3}. Set C=C,(L). Suppose tha' 3|IC;(L)i=C .
Then C contains an element y of order 3. Since L{y)=L x(1)<G, {y)<G. Now
we have that G'/(y) and G'/S* are nilpotent, so G’ is nilpotent, a contradiction.
Thus, 31|C|. Since G/CC Aut(L) and 31|C|, it follows that |G | =2.3. Let S be
a 2-Sylow subgroup of G. since G is an .73-N group, S<G. Since |G| =2"-3 and
S$<G, G’ is nilpotent, a contradiction.

Subcase 3. Suppose that |L|=23. We argue that L is a 2-Sylow subgroup of &.
Suppose false. Then there exists a subgroup L*:> L of order 2*. Since L is e'emen-
tary abelian, L* contains a maximal subgroup L;#L. Since G is an 7;-N group,
L,<G. It follows that L,AL is a normal subgroup of G of order 4, contradicting
the minimality of L. Thus L is a 2-Sylow subgroup of G. Set C=C(L). Let ¥ be
an element of C of order a prime p, where p#2. Let K be a maximal subgroup of
L. Since [L,y]=1, [K,y]=1. Since G is an .»;-N group, K(»)><G. Since
K char K{y)< G, K<G, contradicting the minimality of L. Thus C=Cg;(L)=1.
Since G/CCAut(L)=GL(3,2) and [GL(3,2){=168 and C=L, it follows that
|G| =24, 56 or 168. Since G’ is not nilpotent, |G |#24 or 56. Siuce G is an .7;-N
group and G’ is not nilpotent, it follows that |G|+ 168. This contradiction com-
pletes the proof of the theorem.

In [1], Narsimha and Deskins proved that if G is a PN-3 group, then G is solvable
and Feit(G)=<3.
For the proof of the next lemma, see [4, Thecorem 8.27 (Dickson), p. 213].

Lemma 4. Set G=L,(q), where q is an odd prime power and q=3, 5 (mod 8).
Assume that 74 is empty. Then

(1) G=L,(5)=Aq, or

(2) G=L,(p), where p is a prime such that p—1 and p+ 1 are products of at
most 3 primes, p=3, 5 (mod 8) and p*—1#0 (mod 5), or

(3) G=Ly(q), where q=3""" such that q— | and q+ 1 are products of ar most
3 primes ard g=3, 5 (mod 8).

We shall prove the following result:
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Theorem 7. if G is n .#4-N group, then one of the following holds:
(i) G is solvable, or
(ii) G is isomorphic to (1) or (2) or (3) in the statement of Lemma 4.

Proof. Let G be a counterexample. Let S be a 2-Sylow subgroup of G. Set
|S|=2", n=1.

Case 1. Suppose that n=4. Let H be a subgroup of S of order 2%, Since G is an
#3-N group, H<G. If H is non-abelian, then |Z(H)| =2 or 4. Since G is an .7;-N
group, G/Z(H) is either an #3-N group or an .#5-N group. Now, Theorems 6 and
4 yield that G/Z(H) is solvable and consequently G is solvable, a contradicton.
Thus, H is non-abelian. If H is cyclic, let L be a subgroup of H of order 4. Since
L char H<G, L <G. Since G/L is an .#5-N group, G/L is solvable and consequent-
lv G is solvable, a contradiction. Thus, H is non-cyclic abelian. We argue that
S=H. Suppose false. Then there exists a subgroup S,> H of order 2°. Since S is
non-cyclic, there exists a maximal subgroup K of S; such that H#K. Since G is an
#4-N group, K<G.

Now, it follows easily that HAK is a normal subgroup of G of order 23. Hence,
G/HAK is a PN-1 group. By Theorem 5.7 of [4, p. 436], G/HAK is solvalbe and
consequently G is solvable, a contradiction. Thus H=S. Here we shall not make
use of the Feit-Thompson Theorem [8]. It is clear that we have four types of non-
isomorphic non-cyclic abelian groups:

(2%2%), (2,2%), (2,2,2?) and (2,2,2,2).

Suppose that S is not elementary abelian. Then Q,(S) is elementary abelian of
order 4 or 8. Clearly, Q,(S)<G. Since G is an .74-N group, G/Q,(S) is either an
#,-N group or a PN-1 group. Thus, G/Q,(S) is solvable, and consequently G is
solvable, a contradiction. Now, we may assume that S is elementary abelian. Let
y be an element of C(S) of prime odd order. Then (S, y]=1. let S, be a maximal
subgroup of S. Then, [S,, y]=1. Since G is an .#,4-N group, S,{y)<G and conse-
quently, S; <G. Since G/S, is a PN-1 group, G/S, is solvable and consequently G
is solvable, a contradiction. Thus, C;(S)=S. Since G/CG(S)gAut(S) and
|Aut(S)| =2°x3%2x 5x7 and C;(S) =S, it follows that |G|/|S||3%x5x 7. Now, it
follows easily that G is solvable, a contradiction.

Case 2. Suppose that n=3. Set N=N;(S). If S<G, then G/S is a PN-1 group.
Hence, G/S is solvable and consequently G is solvable, a contradiction. Thus,
N<G. If S<N, let y be an element of N of prime odd order. Since G is an .74-N
group, S¢(y»<G and consequently S<G, a contradiction. Thus N=S§. We argue
that S, is not involved in G. Suppose false. Then, there exist subgroups H > K such
that H/K=S,. If 31|K|, then the Schur-Zassenhaus Theorem implies that
H=KL, where L=S,. Since G is an .#;-N group, L <G. Now Frattini’s argument
yields that G=LN;(S)=L=S,, a contradiction. Thus 3||K|. Let Q be a 3-Sylow
subgroup of K. If |Q!=3, let L/K be a subgroup of H/K of order 23. It is clear
that L has a normal 2-complement and consequently L contains a Hall subgroup
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L, of order 2%3. Let S, be a 2-Sylow subgroup of L,. Let Q, be a 3-Sylow subgroup
of L,. Since G is an #,-group, L, =S§,0, <G and consequently Q, <G. Since G/Q,
is an .#;-N group, G/Q, is solvable and consequently G is solvable, a contradic-
tion. Thus |Q|# 3. Suppose that |Q| =32 Let L/K be a subgroup of H/K of order
4. Then L contains a Hall subgroup L, of order 223%. Now it follows easily that
S,<aL,or Q <L, where S, and Q, are 2-and 3-Sylow subgroups of L, respective-
ly. Since G is an .74-N group, L, <G. Hence either S, <G or Q,<G. Thus G/S; is
an .#7,-N group or G/Q, is an .#,-N group. This is a contradiction. Now suppose
that |Q|=3", where n=3. Let L/K be a subgroup of G/K of order 2. Since L has
a normal 2-complement, L contains a Hall subgroup L, of order 23". Since L, is
supersolvable, L, contains a subgroup L, of order 23*. Let S, be a 2-Sylow sub-
group of L,. Let Q, be a 2-Sylow subgroup of L,. Since G is an .#4-N group, L,<G
and consequently Q,<G. Now, it follows that each element of G/Q- of order 2
is normal. This is a contradiction as S; contains a dihedral group of order 8.
Thus S, is not involved in G. Now a Theorem of Glauberman [9] implies that G
has a normal 2-complement, i.e. G = SK, where K is a normal subgroup of G of odd
order. Let y be an element of S of order 2. Set G, =(y)K. Suppose that g is a
prime divisor of |K| with multiplicity at least 3. It is clear that G, contains a Hall
subgroup L, of order 2¢", where n=3. Since L, is supersolvable, L, contains a
subgroup L, of order 2¢>. Since G is an .#,-N group, L, <G. Now Frattini’s argu-
ment yields that if G=L,Ng({y))/{y) is an .#3-N group, then N;({»)) is solvable.
Hence G is solvable, a contradiction. Thus each prime divisor of |K| appears with
multiplicity at most 2. Now by a very well known result in the literature it follows
that K possesses a Sylow tower and consequently K is solvable. Since G/K =S, and
K is solvable, G is solvable, a contradiction.

Case 3. Suppose that n=2. If S<G, then G/S=K is a #,-N group. Now
Theorem 5 implies that K is solvable, a contradiction. Thus N, (S)<G. It tollows
from the proof of Case 2 that if G has a normal 2-complement, G is solvable. Thus
G has not a normal 2-complement. Now Burnside’s Theorem implies that
C;(S)<N;(S). Now it follows easily that Cs(S)=S. Let O(G) be the largest nor-
mal subgroup of odd order in the group G. By Theorem 2.1 of [2, p. 421], G/O(G)
is isomorphic to L,(q), g=3,5(mod 8). We argue that O(G) = 1. Suppose false. Let
L/O(G) be a subgroup of G/O(G) of order 2. It is clear that L has a normal
2-complement. Hence if q3| |O(G)| for some prime divisor g of (O(G):, then L
contains a Hall subgroup L, of order 2q", where n=3. Since L, is supersolvable,
there exists a subgroup L, of L, of order 2¢*. Since G is an »,-N group, L.<G,
contradicting the simplicity of G/O(G). Thus each prime divicor of :O(G) appears
with multiplicity at most 2. Hence O(G) possesses a Sylow tower. Let P be a p-
Sylow subgroup of O(G), where p is the largest prime in n(O(G)). Then P<G.
Clearly |P|=por p*. Hence G/Pis an .#;-N group or an #>-N group, a contradic-
tion. Thus O(G)= 1. Now Lemma 4 yields that G is isomos ohic to (1) or (2) or (3).
a contradiction.
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Case 4. Suppose that n=1. Then G = SK, where K is a normal subgroup of G of
odd order. Suppose that there exists a prime divisor g of |K| which appears with
multiplicity at least 3. Hence G contains a subgroup L of order 2g°. Since G is an
#4-4 group, L <4G. Let y be an element of L of order 2. Frattini’s argument yields
that G =LNg({»)). It is clear that N=(y)X L, where L, is a normal subgroup of
N of odd order. If {y) is not a normal subgroup of G, then |L,| is the product of
at most 2 primes and consequently G is solvable, a contradiction. Thus {y)=8<G.
let O be the g-Sylow subgroup of L. Then Q<G. Let Q, be a subgroup of Q of
order g°. If Q is cyclic, then Q, < G. Hence G/Q, is an .¥,-N group, a contradic-
tion. Thus, Q is not cyclic. We argue that Q is the g-Sylow subgroup of G. Suppose
false. Then there exists a subgroup H> Q of order g*. Since H is not cyclic, H con-
tains a maximal subgroup Q, such that Qy# Q. Since G is an .¥;-N group,
{¥)Qy <G and consequently Qy<G. It follows that QyAQ is a normal subgroup of
G of order g>. Thus G/QyAQ is an .#,-N group, a contradiction. Thus Q is a nor-
mal g-Sylow subgroup of G. If there exsts a prime divisor r # g of |K| which appears
with multiplicity at least 3, then R <G, where R is an r-Sylow subgroup of G of
order r*. Now it follows easily that SOR is a normal nilpotent subgroup of G. Let
K be a subgroup of SOR of order 2rg®. Let Q, be the g-Sylow subgroup of K.
Since G is an .#4-N group, Q, <G. But then G/Q, is an .#,-N group, a contradic-
tion. Thus g is the only prime divisor of |K| appearing with multiplicity 3. Now
the Schur-Zassenhaus Theorem implies that K/Q=K,, where K, is a subgroup of
K and K=Q,K,. Now, it follows that K, possesses a Sylow tower as each prime
divisor of |K,| appears with multiplicity at most 2. Thus K| is solvable and conse-
quently K is solvable, a contradiction. Therefore, each prime divisor of |K| appears
with multiplicity at most 2. Thus K is solvable, a final contradiction.

It was proved in Janko [10] that if G is a finite non-abelian simple group all of
whose chains of subgroups have length at most 4, then G is isomorphic to L,(p)
for some prime p>3. This result follows at once from Theorem 7.

References

[1] N.S. Narasimha and W.E. Deskins, Influence of normality conditions on almost minimal
subgroups of a finite group, J. Algebra 52 (1978) 364-377.
[2] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
{3] L. Redei, Die endlichen einstufig nichtnilpotenten Gruppen, Publ. Math. Debrecen 4 (1956)
303-324.
{4] B. Huppert, Endliche gruppen I (Springer, Berlin, 1967).
[5] W.R. Scott, Group Theory (Prentice-Hall, Englewood Cliffs, NJ, 1964).
[6] R.W. Van der Waal, On minimal subgroups which are normal, J. Reine Angew. Math. 285 (1976)
77-78.
[7] D.H. McClain, The existence of subgroups of given order in finite groups, Proc. Cambr. Phil. Soc.
53 (1957) 278-285.
[8] W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963)
775-1029.
[9] G. Glauberman, Subgroups of finite groups, Bull. Amer. Math. Soc. 73 (1967) 1-12.
{10] Z. Janko, Finite groups with invariant fourth maximal subgroups, Math Z. 82 (1963) 82-89.



