SUFFICIENT CONDITIONS FOR THE SOLVABILITY AND SUPERSOLVABILITY IN FINITE GROUPS

Mohamed ASAAD*

Cairo University, Faculty of Science, Mathematics Department, Egypt

Communicated by H. Bass Received 5 January 1984

Let r be a natural number. A subgroup H of a finite group G is called an rminimal subgroup of G if there is a chain of subgroups $1 = H_0 \le H_1 \le \dots \le H_r = H$ with each H_i is maximal in H_{i+1} . Naturally an r-minimal subgroup H of G can be also an m-minimal subgroup for $m \ne r$. In [1], N.S. Narasimha and W.E. Deskins said that a group G is a PN-r group if each r-minimal subgroup of G is normal. They showed that PN-r groups are solvable of fitting length at most r for r = 2 and 3. They also obtained results about PN-4 groups.

Let G be a finite group of even order. Then by definition

 $\mathscr{H}_r = \{H < G \mid H \text{ is of even order and } |H| \text{ is the product of } r$ primes not necessarily distinct}.

We say that G is an \mathcal{H}_r -N group if each element of \mathcal{H}_r is normal in G.

Let G be a finite group of odd order. Let p be the smallest prime in $\pi(G)$. Then by definition

 $\mathscr{K}_2 = \{H < G \mid p \text{ divides } |H| \text{ and } |H| \text{ is the product of two primes not necessarily distinct}\}.$

A group G is a \mathscr{H}_2 -N group if each element of \mathscr{H}_2 is normal in G.

Our notation is standard and is taken mainly from [2]. All groups considered are assumed to be finite.

The object of this paper is to prove the following theorems:

Theorem 1. Suppose that each subgroup of order p^2 is normal in G for every prime divisor p of |G| except perhaps the largest. Then either G possesses a Sylow tower or A_4 is involved in G.

G possesses a Sylow tower, that is to say there is a series $1 = G_0 < G_1 < \cdots < G_n = G$

* Current address: Dept. of Mathematics, College of Education, Madinah Munawwarah, Saudi Arabia.

0022-4049/84/\$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

of normal subgroups of G such that for each $i = i, 2, ..., n, G_i/G_{i-1}$ is isomorphic to a p_i -Sylow subgroup of G, where $p_1, p_2, ..., p_n$ are the distinct prime divisors of |G| and $p_1 > p_2 > ... > p_n$. A familiar consequence of the supersolvability of G is that G possesses a Sylow tower [4, p. 716, VI.9.1].

For the proof of Theorem 1 we need the following definition: A group G is called a (p,q)-group if:

(a) The order of G involves only the prime factors p and q.

(b) G is not nilpotent and all its proper subgroups are nilpotent.

(c) The derived group G' is the *p*-Sylow subgroup of G.

We refer the reader to [4, p. 281, Theorem 5.2] for the standard properties of a (p,q)-group.

The following lemma is an immediate consequence of Ito's Theorem [4, p. 434, Theorem 5.4]. So the proof will be omitted here.

Lemma 1. Let p be a fixed prime in $\pi(G)$. Then G possesses a normal p-complement iff G contains no (p,q)-subgroup $\forall q \in \pi(G)$ with $q \neq p$.

Theorem 1 is an immediate consequence of the following lemma:

Lemma 2. Suppose that each subgroup of order p^2 , where p is the smallest prime in $\pi(G)$, is normal in G. Then G has a normal p-complement or A_4 is involved in G.

Proof. Let G be a counterexample. Then, by Lemma 1, G contains a (p,q)-subgroup K. Since A_4 is not involved in K, then $|P| = p^n$, where $P \in \text{Syl}_p(K)$ and $n \ge 3$. Now, we shall make use of the properties of minimal nonnilpotent groups to be found in [3] (see also [4, p. 281, III.5.2]). Clearly P contains a subgroup H of order p^2 . So the hypothesis of the lemma implies that $H \triangleleft G$ and consequently $H \triangleleft K$. If P' = 1, then K/H would be nilpotent. But then K would itself be nilpotent, a contradiction. Thus $P' \neq 1$. We have tha P' = Z(P) is elementary abelian.

If p = 2, then Exp P = 4. Hence there exists an element x of P of order 4 such that $x \notin P'$. The hypothesis of the lemma implies that $\langle x \rangle \triangleleft G$ and consequently $\langle x \rangle \triangleleft K$. Set $L = \langle x \rangle P'$. If L = P, then $P/P' \cong \langle x \rangle / \langle x \rangle \land P' = \langle x \rangle / \langle x \rangle \land Z(P)$. Now it follows that |P/P'| = 2 and this is impossible. Thus L < P. Obviously, $L \triangleleft K$. Now the structure of K yields K/L must be nilpotent. But then K would itself be nilpotent, a contradiction.

Now, we may assume that $p \neq 2$. Exp P = p and $P' \neq 1$. Then P contains an element $x \notin P'$. It is clear that |x| = p. Then x lies in a subgroup H of P of order p^2 . Hence $H \nleq P'$. If L = P, then |P/P'| = p and this is impossible. Thus L < P. Now the structure of K yields K/L must be nilpotent. But then K would itself be nilpotent, a contradiction.

Theorem 2. If G is an \mathcal{H}_2 -N group and A_4 is not involved in G, then G is supersolvable.

Proof. Let $S \in Syl_2(G)$. Suppose that |S| = 2. Then G has a normal 2-complement (Theorem 4.3 of [2, p. 252]). Now Theorem 2.2 of [2, p. 224] implies that for each prime $p \neq 2$, S leaves invariant some p-Sylow subgroup of G. Hence there exists a Hall subgroup H of order $2p^n$, where $p \in \pi(G)$. Theorem 7.2.15 of [5, p. 158] implies that H is supersolvable. Then H possesses a subgroup $H_1 = S\langle y \rangle$ of order 2p. Since G is an \mathscr{H}_2 -N group, $H_1 \triangleleft G$. Now Frattini argument yields $G = \langle y \rangle N_G(S)$. Set $N = N_G(S)$. Once again Theorem 7.2.15 of [5, p. 158] implies that we may assume $\pi(N)$ contains an odd prime $r \neq p$. Let $z \in N$ such that |z| = r. Since G is an \mathscr{H}_2 -N group, $\langle z \rangle S \triangleleft G$. Since S char $\langle z \rangle S \triangleleft G$. Let x be an arbitrary element of G of odd prime order. Since G is an \mathscr{H}_2 -N group, $\langle x \rangle S \triangleleft G$. Thus G is a PN-1 group. Now Theorem 2 of [6] implies that G is supersolvable.

Now we may assume that $|S| = 2^n$, where $n \ge 2$. Let x be an element of order 2. Then x lies in a subgroup H of G of order 4. Since G is an \mathscr{H}_2 -N group, $H \triangleleft G$. Let y be an element of odd prime order. Since A_4 is not involved in G, [H, y] = 1 and [x, y] = 1. Since $\langle x \rangle \operatorname{char} \langle x \rangle \langle y \rangle \triangleleft G$ and $\langle y \rangle \operatorname{char} \langle x \rangle \langle y \rangle \triangleleft G$, it follows that $\langle x \rangle \triangleleft G$ and $\langle y \rangle \triangleleft G$. Thus, G is a PN-1 group. We conclude therefore from Theorem 2 of [6] and Lemma 2 that G is supersolvable.

The proof of our next result is similar to that of Theorem 2. So the proof will be omitted here.

Theorem 3. If G is an \mathscr{K}_2 -N group and $q \equiv 1 \pmod{p}$ for some prime $q \in \pi(G)$, then G is supersolvable.

Theorem 4. If G is an \mathscr{H}_2 -N group, then G' is nilpotent.

Proof. Let S be a 2-Sylow subgroup of G. If |S| = 2, then G is supersolvable (see first paragraph of proof of Theorem 2). Now Theorem 9.1 of [4, p. 716] implies that G' is nilpotent. Once again Theorem 2 implies that 3||G|.

Now we may assume that $|S| = 2^n$, where $n \ge 2$. Either $|\pi(G)| \ge 3$ or $|\pi(G)| = 2$. If $|\pi(G)| \ge 3$, let y be an element of prime order p, where $p \ne 2$ and $p \ne 3$. Let x be an element of order 2. Then x lies in a subgroup H of order 4. Since G is an \mathscr{H}_2 -N group, $H \lhd G$. Hence [H, y] = 1 and [x, y] = 1. Since $\langle x \rangle \operatorname{char} \langle x \rangle \langle y \rangle \lhd G$ and $\langle y \rangle \operatorname{char} \langle x \rangle \langle y \rangle \lhd G$, $\langle x \rangle \lhd G$ and $\langle y \rangle \lhd G$. Let z be an element of order 3. Since $\langle x \rangle \langle z \rangle \lhd G$ and $\langle z \rangle \operatorname{char} \langle x \rangle \langle z \rangle$, it follows that $\langle z \rangle \lhd G$. It is clear that $G' \le C_G(\langle x \rangle)$ for any element x of order 4. Now we have $G' \le C_G(\langle x \rangle)$ for any element x of order 4 or a prime. By Theorem 5.5 of [4, p. 435], it follows that G' is nilpotent. If $|\pi(G)| = 2$, then $|G| = 2^n 3^m$. Hence G is solvable (Theorem 7.3 of [4, p. 492]). Let L be a minimal normal subgroup of G. Clearly L is elementary abelian. Suppose that $|L| = 3^b$. Let x be an element of order 3. Then [H, L] = 1 and [x, y] = 1. Since $\langle x \rangle \operatorname{char} \langle x \rangle \langle y \rangle \lhd G$, $\langle x \rangle \lhd G$. Let z be an element of G order 3. Since $\langle z \rangle$ char $\langle x \rangle \langle z \rangle \triangleleft G$, $\langle z \rangle \triangleleft G$. Now, we have $G' \leq C_G(\langle x \rangle)$ for any element x of order 4, 2 or 3 and consequently G' is nilpotent. Hence, we may assume that $|L| = 2^a$. Since G is an \mathscr{H}_2 -N group and L i a minimal normal subgroup, |L| = 2 or 4. If |L| = 2, then $G' \leq C_G(\langle x \rangle)$ for every element x or order 4, 2 or 3 and consequently G' is nilpotent. Assume that |L| = 4. We argue that L is the 2-Sylow subgroup of G. Suppose false. Then G contains a subgroup K > L of order 2^3 . Since L is elementary abelian, K contains a maximal subgroup $L_1 \neq L$. Since G is an \mathscr{H}_2 -group, $L_1 \triangleleft G$. But now $L_1 \wedge L$ is a normal subgroup of G of order 2, contradicting the minimality of L. Thus L is the 2-Sylow subgroup of G. If $3 ||C_G(L)|$, then $G' \leq C_G(\langle x \rangle)$ for every element x of order 4, 2 and 3 and consequently G' is nilpotent. Hence $L = C_G(L)$. Now it follows easily that $G \cong A_4$ and consequently G' is nilpotent.

Theorem 5. If G is an \mathscr{K}_2 -N group, then G' is nilpotent.

Proof. Let P be a p-Sylow subgroup of G, where p is the smallest odd prime in $\pi(G)$. Suppose that |P| = p. Set $N = N_G(P)$. If P < N, then N contains an element y of prime order $q \neq p$. Since G is an \mathscr{X}_2 -N group, $\langle y \rangle P \triangleleft G$. Since P char $P\langle y \rangle \triangleleft G$, $P \triangleleft G$. Now, it follows that G is a PN-1 group. By Theorem 5.3 of [4, p. 283], G' is nilpotent. Hence we may assume that P = N. Thus G is a Frobenius group with complement P and kernel K. Theorem 3.1 of [2, p. 339] implies that K is nilpotent. Now, it follows easily that G' is nilpotent.

Suppose that $|P| = p^n$, where $n \ge 2$. Let x be an element of order p. Then x lies in a normal subgroup H of order p^2 . Let y be an element of prime order $q \ne p$. Theorem 4.3 of [2, p. 252] implies that [H, y] = 1 and [x, y] = 1. Since $\langle x \rangle \operatorname{char} \langle x \rangle \langle y \rangle \triangleleft G$ and $\langle y \rangle \operatorname{char} \langle x \rangle \langle y \rangle \triangleleft G$, it follows that $\langle x \rangle \triangleleft G$ and $\langle y \rangle \triangleleft G$. Thus G is a PN-1 group. Once again Theorem 5.3 of [4, p. 283] implies that G' is nilpotent.

In [1], Narasimha and Deskins proved that if G is a PN-2 group, then G' is nilpotent. Theorems 4 and 5 generalize this result.

Lemma 3. If \mathcal{H}_3 is empty, then |G| is the product of at most three primes not necessarily distinct.

Proof. Assume that G is not a 2-group. It is clear that if G is a 2-group, then $|G| \le 2^3$. Let S be a 2-Sylow subgroup of G. Since \mathscr{H}_3 is empty, $|S| \le 4$.

If |S|=2, then G=SK, where K is a normal subgroup of G of odd order (Theorem 4.3 of [2, p. 252]). Theorem 2.2 of [2, p. 224] implies that for each prime $p \neq 2$, S leaves invariant some p-Sylow subgroup of G. Hence if there exists a p-Sylow subgroup P of G of order p^n , where $n \ge 2$, then G contains a Hall subgroup L of order $2p^n$. Theorem 7.2.15 of [5, p. 158] implies that L is supersolvable. Theorem 1 of [7, p. 279] implies that L contains a subgroup L_1 of order $2p^2$. Since \mathscr{H}_3 is empty, $|G| = |L_1| = 2p^2$. Now we may assume that K is of square free order. It follows easily that |G| = 2p or 2pq, where 2, p and q are distinct primes. Suppose that |S| = 4. Since $\#_3$ is empty, $N_G(S) = C_G(S) = S$. Thus, G = SK, where K is a normal subgroup of G of odd order. It is clear that G contains a subgroup L of order 2|K|. The preceding paragraph implies that |L| = 2p or 2pq, where 2, p and q are distinct primes. Since $\#_3$ is empty and L < G, |L| = 2p and consequently $|G| = 2^2p$.

Theorem 6. If G is $n \mathcal{H}_3$ -N group, then G' is nilpotent.

Proof. Let G be a counterexample. Let S be a 2-Sylow subgroup of G. Set $|S| = 2^n$, where $n \ge 1$.

Case 1. Suppose that n=1. By Theorem 4.3 of [2, p. 252], G has a normal 2-complement and so $2 \nmid |G'|$. If $S \triangleleft G$, then G/S is an \mathscr{K}_2 -N group. By Theorem 5 $(G/S)' = G'S/S \cong G'/G' \land S = G'$ is nilpotent, a contradiction. Thus, S is not normal subgroup of G. It is very well known that if G is of square free order, then G is supersolvable, and consequently G' is nilpotent. Since G' is not nilpotent, so G contains a p-Sylow subgroup P of order p^m , where $m \ge 2$ and $p \ne 2$. Since G has a normal 2-complement, Theorem 2.2 of [2, p. 224] implies that for each prime $p \neq 2$, S leaves invariant some p-Sylow subgroup of G. Thus there exists a Hall subgroup H of order $2p^m$, where $m \ge 2$. Now, Theorem 7.2.15 of [5, p. 158] implies that H is supersolvable. Then H possesses a subgroup L of order $2p^2$ [7, Theorem 1, p. 279]. Let P_1 be a p-Sylow subgroup of L. Since G is an \mathcal{H}_3 -N group, $L \triangleleft G$. Now Frattini's argument yields $G = P_1 N_G(S)$. Let r be an odd prime such that $r||N_G(S)|$. If $r^2||N_G(S)|$, then $N_G(S)$ contains a subgroup M of order $2r^2$. Since G is an \mathcal{H}_3 -N group, $M \triangleleft G$ and consequently $S \triangleleft G$, a contradiction. Thus $N_G(S)$ is of square free order. If $|\pi(N_G(S))| \ge 3$, then $N_G(S)$ contains a subgroup K of order $2r_1r_2$, where 2, r_1 and r_2 are distinct primes. Since G is an w_3 -N group, $K \triangleleft G$, a contradiction. Thus $|\pi(N_G(S))| \leq 2$. Since G' is not nilpotent and $|\pi(N_G(S))| \le 2$, we have $|N_G(S)| = 2r$, where 2, r and p are distinct primes. Now, it follows easily that $|G| = 2rp^2$ and consequently G' is nilpotent, contradiction.

Case 2. Suppose that n=2. We argue that S is not a normal subgroup of G. Suppose false. Then Theorem 2.1 of [2, p. 221] implies that there exists a \mathbb{Z} -complement K of G, $K \cong G/S$. It is clear that K is a PN-1 roup. Now Theorem 5.3 of [4, p. 283] implies that $(G/S)' = G'S/S \cong G'/G' \land S$ is nilpotent. Let x be an element of G of order a prime p, where $p \neq 2$ and $p \neq 3$. Theorem 4.3 of [2, p. 252] implies that $S\langle x \rangle = S \times \langle x \rangle$. Since G is an \mathscr{H}_3 -N group, $S\langle x \rangle \triangleleft G$ and consequently $\langle x \rangle \triangleleft G$. But now $G/\langle x \rangle$ is nilpotent. Since G' is not nilpotent and $\langle x \rangle = p$, $G'/G' \land \langle x \rangle \equiv G'/G' \land \langle x \rangle$ is nilpotent. Since G' is not nilpotent and $\langle x \rangle = p$, $G'/G' \land \langle x \rangle = G'/\langle x \rangle$. But $G'/(G' \land S) \land \langle x \rangle \subset G'/G' \land S \times G'/\langle x \rangle$, so G' is nilpotent, a contradiction. Thus $C_G(S) = G$, then $S \leq Z(G)$ and consequently G is nilpotent, a contradiction. Thus $C_G(S) < G$. Let x be an element of $C_G(S)$ of order 3. Then, $S\langle x \rangle = S \times \langle x \rangle$. Since G is an \mathscr{H}_3 -N group, $S\langle x \rangle \triangleleft G$ and consequently $\langle x \rangle \triangleleft G$. Since $G'/\langle x \rangle$ and $G'/G' \land S$ are nilpotent, G' is nilpotent, a contradiction. Hence $C_G(S) = S < G$. Clearly S is elementary abelian. Since $G/C_G(S) \subset Aut(S)$,

 $|\operatorname{Aut}(S)| = 6$, $C_G(S) = S$ and $\pi(G) = \{2, 3\}$, it follows that $G \cong A_4$ and consequently G' is nilpotent, a contradiction. Thus S is not a normal subgroup of G. Set $N = N_G(S)$. If S < N, then N contains an element x of order a prime $p \neq 2$. Since G is an \mathscr{H}_3 -N group, $\langle x \rangle S \triangleleft G$. Since S char $S \langle x \rangle \triangleleft G$, $S \triangleleft G$, a contradiction. Hence $N=S=C_G(S)$. Now, Theorem 4.3 of [2, p. 252] implies that G has a normal 2-complement and consequently A_4 is not involved in G. Suppose that $S \wedge S^x \neq 1$ for some $x \in G - N$. Then $S \wedge S^x = \langle y \rangle$, where |y| = 2. Set $N_1 = N_G(\langle y \rangle)$. If $N_1 = G$, then $\langle y \rangle \triangleleft G$. Since G is an \mathscr{H}_3 -N group, $G/\langle y \rangle$ is an \mathscr{H}_2 -group. Theorem 2 implies that $G/\langle y \rangle$ is supersolvable and consequently G is supersolvable. Now, Theorem 9.1 of [4, p. 716] implies that G' is nilpotent, a contradiction. Thus $\langle y \rangle$ is not a normal subgroup of G. It is clear that N_1 contains an odd prime r. Let z be an element of N_1 of order r. Obviously N_1 is solvable. Since $\langle y \rangle$ is not a normal subgroup and G is an \mathcal{H}_3 -group, it follows that $r||N_1|$. Since N_1 is solvable, N_1 contains a Hall subgroup $L = S_1(z)$, where $|S_1| = 4$ and |z| = r (Theorem 4.1 of [2, p. 231]). Since G is an \mathscr{H}_3 -N group, $L \triangleleft G$. Since G has a normal 2-complement, $\langle z \rangle$ char L. Since $\langle z \rangle$ char $L \triangleleft G$, $\langle z \rangle \triangleleft G$. But then $G/\langle z \rangle$ is an \mathscr{H}_2 -N group. Now, Theorem 2 implies that $G/\langle z \rangle$ is supersolvable and consequently G is supersolvable. Hence G' is nilpotent, a contradiction. Thus $S \wedge S^x = 1$ for each element $x \in G - N$. Now, it follows that G is a Frobenius group with complement S and kernel K. Theorem 3.1 of [2, p. 339] implies that K is abelian. Now, it follows easily that G' is abelian, a contradiction.

Case 3. Suppose that $n \ge 3$. Let G denote a counterexample of least possible order. Lemma 3 and our choice of G imply that each proper subgroup of G is solvable. Let L be a minimal normal subgroup of G. Now it follows easily that L < G and L is an elementary abelian p-group for some prime p (Theorem 1.5 of [2, p. 17]). Suppose that $p \ne 2$. Let S_1 be a subgroup of S of order 2^3 . Since G is an \mathscr{H}_3 -N group, $S_1 \triangleleft G$. Let $y \in L$. Let S_2 be a maximal subgroup of S_1 . Since $[S_1, L] = 1$, $[S_2, y] = 1$. Since G is an \mathscr{H}_3 -N group, $S_2 \times \langle y \rangle \triangleleft G$. Since $\langle y \rangle$ char $\langle y \rangle S_2 \triangleleft G$ and S_2 char $\langle y \rangle S_2 \triangleleft G$, $\langle y \rangle \triangleleft G$ and $S_2 \triangleleft G$. It is clear that G/S_2 is a PN-1 group. Theorem 5.7 of [4, p. 436] implies that

$$(G/S_2)' = G'S_2/S_2 \cong G'/G' \wedge S_2 = S^*/G' \wedge S_2 \cdot K/G' \wedge S_2,$$

where $S^*/G' \wedge S_2$ is a normal 2-Sylow subgroup of $G'/G' \wedge S_2$ and $K/G' \wedge S_2$ is nilpotent subgroup of $G'/G' \wedge S_2$ of odd order. Now, it follows that G'/S^* is nilpotent. Since G is an \mathscr{H}_3 -N group, it follows that $G/\langle y \rangle$ is an \mathscr{H}_2 -N group. Theorem 4 implies that $(G/\langle y \rangle)'$ is nilpotent. Since G' is not nilpotent and |y| = p, $(G/\langle y \rangle)' = G'/\langle y \rangle$. Since G'/S^* and $G'/\langle y \rangle$ are nilpotent, G' is nilpotent, a contradiction. Thus we must have p = 2. Since L is a minimal normal subgroup of G and G is an \mathscr{H}_3 -N group, $|L| \le 2^3$.

Subcase 1. Suppose that |L| = 2. Then G/L is an \mathscr{H}_2 -N group. Theorem 4 implies that (G/L)' = G'L/L is nilpotent. Since G' is not nilpotent and |L| = 2, it follows that G'/L is nilpotent. Since G'/L is nilpotent and |L| = 2, it follows that G' is nilpotent, a contradiction.

Subcase 2. Suppose that |L| = 4. Since G is an \mathcal{M}_3 -N group, G/L is a PN-1 group. Theorem 5.7 of [4, p. 436] implies that

$$(G/L)' = G'L/L \cong G'/G' \wedge L = S^*/G' \wedge L \cdot M/G' \wedge L$$

where $S^*/G'L$ is a normal 2-Sylow subgroup of $G'/G' \wedge L$ and $M/G' \wedge L$ is a nilpotent subgroup of $G'/G' \wedge L$ of odd order. Now, it follows that G'/S^* is nilpotent. Let x be an element of G of order a prime p, where $p \neq 2$ and $p \neq 3$. Since G is an \mathscr{H}_3 -group, $L\langle x \rangle \triangleleft G$. By Theorem 4.3 of [2, p. 252], $L\langle x \rangle = L \times \langle x \rangle$. Since $\langle x \rangle$ char $\langle x \rangle L \triangleleft G$, $\langle x \rangle \triangleleft G$. Since G is an \mathscr{H}_3 -N group, $G/\langle x \rangle$ is an \mathscr{H}_2 -N group. Theorem 4 implies that $(G/\langle x \rangle)' = G'\langle x \rangle / \langle x \rangle \cong G'/G' \wedge \langle x \rangle$ is nilpotent. Since $G'/G' \wedge \langle x \rangle = G'/\langle x \rangle$. Since G'/S^* and $G'/\langle x \rangle$ are nilpotent, G' is nilpotent, a contradiction. Thus, $\pi(G) = \{2, 3\}$. Set $C = C_G(L)$. Suppose that $3 \mid |C_G(L)| = |C|$. Then C contains an element y of order 3. Since $L\langle y \rangle = L \times \langle y \rangle \triangleleft G$, $\langle y \rangle \triangleleft G$. Now we have that $G'/\langle y \rangle$ and G'/S^* are nilpotent, so G' is nilpotent, a contradiction. Thus, $3 \nmid |C|$. Since $G/C \subsetneq Aut(L)$ and $3 \restriction |C|$, it follows that $|G| = 2^3 \cdot 3$. Let S be a 2-Sylow subgroup of G. since G is an \mathscr{H}_3 -N group, $S \triangleleft G$. Since $|G| = 2^2 \cdot 3$ and $S \triangleleft G$, G' is nilpotent, a contradiction.

Subcase 3. Suppose that $|L| = 2^3$. We argue that L is a 2-Sylow subgroup of G. Suppose false. Then there exists a subgroup $L^* > L$ of order 2^4 . Since L is elementary abelian, L^* contains a maximal subgroup $L_1 \neq L$. Since G is an \mathscr{M}_3 -N group, $L_1 \triangleleft G$. It follows that $L_1 \land L$ is a normal subgroup of G of order 4, contradicting the minimality of L. Thus L is a 2-Sylow subgroup of G. Set $C = C_G(L)$. Let y be an element of C of order a prime p, where $p \neq 2$. Let K be a maximal subgroup of L. Since [L, y] = 1, [K, y] = 1. Since G is an \mathscr{M}_3 -N group, $K\langle y \rangle \triangleleft G$. Since K char $K\langle y \rangle \triangleleft G$, $K \triangleleft G$, contradicting the minimality of L. Thus $C = C_G(L) = L$. Since $G/C \subsetneq Aut(L) \cong GL(3, 2)$ and |GL(3, 2)| = 168 and C = L, it follows that |G| = 24, 56 or 168. Since G' is not nilpotent, $|G| \neq 24$ or 56. Since G is an \mathscr{M}_3 -N group and G' is not nilpotent, it follows that $|G| \neq 168$. This contradiction completes the proof of the theorem.

In [1], Narsimha and Deskins proved that if G is a PN-3 group, then G is solvable and Feit(G) ≤ 3 .

For the proof of the next lemma, see [4, Theorem 8.27 (Dickson), p. 213].

Lemma 4. Set $G \cong L_2(q)$, where q is an odd prime power and $q \equiv 3, 5 \pmod{8}$. Assume that \mathcal{H}_4 is empty. Then

(1) $G \cong L_2(5) \cong A_5$, or

(2) $G \cong L_2(p)$, where p is a prime such that p-1 and p+1 are products of at most 3 primes, $p \equiv 3$, 5 (mod 8) and $p^2 - 1 \not\equiv 0 \pmod{5}$, or

(3) $G \cong L_2(q)$, where $q = 3^{2n+1}$ such that q-1 and q+1 are products of at most 3 primes and $q \equiv 3$, 5 (mod 8).

We shall prove the following result:

- **Theorem 7.** if G is $n \not H_4$ -N group, then one of the following holds:
 - (i) G is solvable, or
 - (ii) G is isomorphic to (1) or (2) or (3) in the statement of Lemma 4.

Proof. Let G be a counterexample. Let S be a 2-Sylow subgroup of G. Set $|S| = 2^n$, $n \ge 1$.

Case 1. Suppose that $n \ge 4$. Let H be a subgroup of S of order 2⁴. Since G is an \mathscr{H}_4 -N group, $H \lhd G$. If H is non-abelian, then |Z(H)| = 2 or 4. Since G is an \mathscr{H}_4 -N group, G/Z(H) is either an \mathscr{H}_3 -N group or an \mathscr{H}_2 -N group. Now, Theorems 6 and 4 yield that G/Z(H) is solvable and consequently G is solvable, a contradicton. Thus, H is non-abelian. If H is cyclic, let L be a subgroup of H of order 4. Since L char $H \lhd G$, $L \lhd G$. Since G/L is an \mathscr{H}_2 -N group, G/L is solvable and consequently G is solvable and consequently G is solvable, a contradiction. Thus, H is non-cyclic abelian. If H is cyclic, let L be a subgroup of H of order 4. Since L char $H \lhd G$, $L \lhd G$. Since G/L is an \mathscr{H}_2 -N group, G/L is solvable and consequently G is solvable, a contradiction. Thus, H is non-cyclic abelian. We argue that S = H. Suppose false. Then there exists a subgroup $S_1 > H$ of order 2⁵. Since S_1 is non-cyclic, there exists a maximal subgroup K of S_1 such that $H \neq K$. Since G is an \mathscr{H}_4 -N group, $K \lhd G$.

Now, it follows easily that $H \wedge K$ is a normal subgroup of G of order 2³. Hence, $G/H \wedge K$ is a PN-1 group. By Theorem 5.7 of [4, p. 436], $G/H \wedge K$ is solvable and consequently G is solvable, a contradiction. Thus H = S. Here we shall not make use of the Feit-Thompson Theorem [8]. It is clear that we have four types of non-isomorphic non-cyclic abelian groups:

$$(2^2, 2^2)$$
, $(2, 2^3)$, $(2, 2, 2^2)$ and $(2, 2, 2, 2)$.

Suppose that S is not elementary abelian. Then $\Omega_1(S)$ is elementary abelian of order 4 or 8. Clearly, $\Omega_1(S) \triangleleft G$. Since G is an \mathscr{H}_4 -N group, $G/\Omega_1(S)$ is either an \mathscr{H}_2 -N group or a PN-1 group. Thus, $G/\Omega_2(S)$ is solvable, and consequently G is solvable, a contradiction. Now, we may assume that S is elementary abelian. Let y be an element of $C_G(S)$ of prime odd order. Then [S, y] = 1. let S_1 be a maximal subgroup of S. Then, $[S_1, y] = 1$. Since G is an \mathscr{H}_4 -N group, $S_1 \langle y \rangle \triangleleft G$ and consequently, $S_1 \triangleleft G$. Since G/S_1 is a PN-1 group, G/S_1 is solvable and consequently G is solvable, a contradiction. Thus, $C_G(S) = S$. Since $G/C_G(S) \subsetneq Aut(S)$ and $|Aut(S)| = 2^6 \times 3^2 \times 5 \times 7$ and $C_G(S) = S$, it follows that $|G|/|S| | 3^2 \times 5 \times 7$. Now, it follows easily that G is solvable, a contradiction.

Case 2. Suppose that n = 3. Set $N = N_G(S)$. If $S \triangleleft G$, then G/S is a PN-1 group. Hence, G/S is solvable and consequently G is solvable, a contradiction. Thus, N < G. If S < N, let y be an element of N of prime odd order. Since G is an \mathscr{H}_4 -N group, $S\langle y \rangle \triangleleft G$ and consequently $S \triangleleft G$, a contradiction. Thus N = S. We argue that S_4 is not involved in G. Suppose false. Then, there exist subgroups H > K such that $H/K \cong S_4$. If $3 \nmid |K|$, then the Schur-Zassenhaus Theorem implies that H = KL, where $L \cong S_4$. Since G is an \mathscr{H}_4 -N group, $L \triangleleft G$. Now Frattini's argument yields that $G = LN_G(S) = L \cong S_4$, a contradiction. Thus $3 \mid |K|$. Let Q be a 3-Sylow subgroup of K. If |Q| = 3, let L/K be a subgroup of H/K of order 2^3 . It is clear that L has a normal 2-complement and consequently L contains a Hall subgroup L_1 of order 2³3. Let S₁ be a 2-Sylow subgroup of L_1 . Let Q_1 be a 3-Sylow subgroup of L_1 . Since G is an \mathscr{H}_4 -group, $L_1 = S_1 Q_1 \triangleleft G$ and consequently $Q_1 \triangleleft G$. Since G/Q_1 is an \mathcal{M}_3 -N group, G/Q_1 is solvable and consequently G is solvable, a contradiction. Thus $|Q| \neq 3$. Suppose that $|Q| = 3^2$. Let L/K be a subgroup of H/K of order 4. Then L contains a Hall subgroup L, of order 2^23^2 . Now it follows easily that $S_1 \triangleleft L_1$ or $Q_1 \triangleleft L_1$, where S_1 and Q_1 are 2-and 3-Sylow subgroups of L_1 , respectively. Since G is an \mathcal{M}_4 -N group, $L_1 \triangleleft G$. Hence either $S_1 \triangleleft G$ or $Q_1 \triangleleft G$. Thus G/S_1 is an \mathcal{H}_2 -N group or G/Q_1 is an \mathcal{H}_2 -N group. This is a contradiction. Now suppose that $|Q| = 3^n$, where $n \ge 3$. Let L/K be a subgroup of G/K of order 2. Since L has a normal 2-complement, L contains a Hall subgroup L_1 of order 23ⁿ. Since L_1 is supersolvable, L_1 contains a subgroup L_2 of order 23³. Let S_2 be a 2-Sylow subgroup of L_2 . Let Q_2 be a 2-Sylow subgroup of L_2 . Since G is an \mathcal{H}_4 -N group, $L_2 \triangleleft G$ and consequently $Q_2 \triangleleft G$. Now, it follows that each element of G/Q_2 of order 2 is normal. This is a contradiction as S_4 contains a dihedral group of order 8. Thus S_4 is not involved in G. Now a Theorem of Glauberman [9] implies that G has a normal 2-complement, i.e. G = SK, where K is a normal subgroup of G of odd order. Let y be an element of S of order 2. Set $G_1 = \langle y \rangle K$. Suppose that q is a prime divisor of |K| with multiplicity at least 3. It is clear that G_1 contains a Hall subgroup L_1 of order $2q^n$, where $n \ge 3$. Since L_1 is supersolvable, L_1 contains a subgroup L_2 of order $2q^3$. Since G is an \mathscr{H}_4 -N group, $L_2 \triangleleft G$. Now Frattini's argument yields that if $G = L_2 N_G(\langle y \rangle) / \langle y \rangle$ is an \mathcal{H}_3 -N group, then $N_G(\langle y \rangle)$ is solvable. Hence G is solvable, a contradiction. Thus each prime divisor of |K| appears with multiplicity at most 2. Now by a very well known result in the literature it follows that K possesses a Sylow tower and consequently K is solvable. Since $G/K \cong S$, and K is solvable, G is solvable, a contradiction.

Case 3. Suppose that n=2. If $S \triangleleft G$, then $G/S \cong K$ is a \mathscr{A}_2 -N group. Now Theorem 5 implies that K is solvable, a contradiction. Thus $N_G(S) < G$. It follows from the proof of Case 2 that if G has a normal 2-complement, G is solvable. Thus G has not a normal 2-complement. Now Burnside's Theorem implies that $C_G(S) < N_G(S)$. Now it follows easily that $C_G(S) = S$. Let O(G) be the largest normal subgroup of odd order in the group G. By Theorem 2.1 of [2, p. 421], G/O(G)is isomorphic to $L_2(q)$, $q \equiv 3,5 \pmod{8}$. We argue that O(G) = 1. Suppose false. Let L/O(G) be a subgroup of G/O(G) of order 2. It is clear that L has a normal 2-complement. Hence if $q^3 ||O(G)|$ for some prime divisor q of |O(G)|, then L contains a Hall subgroup L_1 of order $2q^n$, where $n \ge 3$. Since L_1 is supersolvable. there exists a subgroup L_2 of L_1 of order $2q^3$. Since G is an $*_4$ -N group, $L_2 \triangleleft G$, contradicting the simplicity of G/O(G). Thus each prime divisor of |O(G)| appears with multiplicity at most 2. Hence O(G) possesses a Sylow tower. Let P be a p-Sylow subgroup of O(G), where p is the largest prime in $\pi(O(G))$. Then $P \triangleleft G$. Clearly |P| = p or p^2 . Hence G/P is an \mathcal{H}_3 -N group or an \mathcal{H}_3 -N group, a contradiction. Thus O(G) = 1. Now Lemma 4 yields that G is isomorphic to (1) or (2) or (3), a contradiction.

Case 4. Suppose that n = 1. Then G = SK, where K is a normal subgroup of G of odd order. Suppose that there exists a prime divisor q of |K| which appears with multiplicity at least 3. Hence G contains a subgroup L of order $2q^3$. Since G is an \mathcal{H}_4 -4 group, $L \lhd G$. Let y be an element of L of order 2. Frattini's argument yields that $G = LN_G(\langle y \rangle)$. It is clear that $N = \langle y \rangle \times L_1$, where L_1 is a normal subgroup of N of odd order. If $\langle y \rangle$ is not a normal subgroup of G, then $|L_1|$ is the product of at most 2 primes and consequently G is solvable, a contradiction. Thus $\langle y \rangle = S \triangleleft G$. let Q be the q-Sylow subgroup of L. Then $Q \triangleleft G$. Let Q_1 be a subgroup of Q of order q^2 . If Q is cyclic, then $Q_1 \triangleleft G$. Hence G/Q_1 is an \mathscr{H}_2 -N group, a contradiction. Thus, Q is not cyclic. We argue that Q is the q-Sylow subgroup of G. Suppose false. Then there exists a subgroup H > Q of order q^4 . Since H is not cyclic, H contains a maximal subgroup Q_0 such that $Q_0 \neq Q$. Since G is an \mathcal{H}_4 -N group, $\langle y \rangle Q_0 \triangleleft G$ and consequently $Q_0 \triangleleft G$. It follows that $Q_0 \land Q$ is a normal subgroup of G of order q^2 . Thus $G/Q_0 \wedge Q$ is an \mathscr{H}_2 -N group, a contradiction. Thus Q is a normal q-Sylow subgroup of G. If there exsts a prime divisor $r \neq q$ of |K| which appears with multiplicity at least 3, then $R \triangleleft G$, where R is an r-Sylow subgroup of G of order r^3 . Now it follows easily that SQR is a normal nilpotent subgroup of G. Let K be a subgroup of SQR of order $2rq^2$. Let Q_1 be the q-Sylow subgroup of K. Since G is an \mathscr{H}_4 -N group, $Q_1 \triangleleft G$. But then G/Q_1 is an \mathscr{H}_2 -N group, a contradiction. Thus q is the only prime divisor of |K| appearing with multiplicity 3. Now the Schur-Zassenhaus Theorem implies that $K/Q \cong K_1$, where K_1 is a subgroup of K and $K = Q_1 K_1$. Now, it follows that K_1 possesses a Sylow tower as each prime divisor of $|K_1|$ appears with multiplicity at most 2. Thus K_1 is solvable and consequently K is solvable, a contradiction. Therefore, each prime divisor of |K| appears with multiplicity at most ?. Thus K is solvable, a final contradiction.

It was proved in Janko [10] that if G is a finite non-abelian simple group all of whose chains of subgroups have length at most 4, then G is isomorphic to $L_2(p)$ for some prime p>3. This result follows at once from Theorem 7.

References

- [1] N.S. Narasimha and W.E. Deskins, Influence of normality conditions on almost minimal subgroups of a finite group, J. Algebra 52 (1978) 364-377.
- [2] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
- [3] L. Rèdei, Die endlichen einstufig nichtnilpotenten Gruppen, Publ. Math. Debrecen 4 (1956) 303-324.
- [4] B. Huppert, Endliche gruppen I (Springer, Berlin, 1967).
- [5] W.R. Scott, Group Theory (Prentice-Hall, Englewood Cliffs, NJ, 1964).
- [6] R.W. Van der Waal, On minimal subgroups which are normal, J. Reine Angew. Math. 285 (1976) 77-78.
- [7] D.H. McClain, The existence of subgroups of given order in finite groups, Proc. Cambr. Phil. Soc. 53 (1957) 278-285.
- [8] W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
- [9] G. Glauberman, Subgroups of finite groups, Bull. Amer. Math. Soc. 73 (1967) 1-12.
- [10] Z. Janko, Finite groups with invariant fourth maximal subgroups, Math Z. 82 (1963) 82-89.