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Let r be a natural number. A subgroup H of a finite group G is called an I-- 

minimal subgroup of G if there is a chain of subgroups 1 = H,I IfI 5 ..a I H, = H 
with each Hi is maximal in Hi+ ]. Naturally an r-minimal subgroup H of G can bt 
also an nj-minimal subgroup for m#r. In [l], N.S. Narasimha and W.E. Deskins 

said that a group G is a PN-r group if each r-minimal subgroup of G is normal. 

They showed that PN-r groups are solvable of fitting length at most r for 4’12 and 

3. They also obtained results about PN-4 groups. 

Let G be a finite group of even order. Then by definition 

JV; = {H<G 1 H is of even order and 1 H 1 is the product of r 

primes not necessarily distinct > . 

We say that G is an .v/;-N group if each element of .w, is normal in G. 

Let G be a finite group of odd order. Let y be the smallest prime in x(G). Then 

by definition 

_I’~ = {H< G 1 p divides i H 1 and (H ) is the product of two primes 

not necessarily distinct } . 

A group G is a .x;-N group if each elernent of .Q is normal in G. 

Our notation is standard and is taken mainly from [2]. All groups considered are 

assumed to be finite. 

The object of this paper is to prove tlhe following theorems: 

Theorem 1. Suppose that each subgroup of order p’ is normal in G for ewr_v prime 
divisor p of 1 G 1 except perhaps the largest. Then either G possesses a Svlow tower 
or A4 is involved in G. 

G possesses a Sylow tower, that is to say there is a series 1 = G,< G, < ..* < G,! = G 
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of normal subgroups of G such that for each i = i, 2, . . . , n, G;/G;_ 1 is isomorphic to 
a p,-Sylow subgroup of G, where pi, ~2, . . . . p,] are the distinct prime divisors of 

IG 1 and p, >P+-+&I,~. A familiar consequence of the supersolvability of G is 
that G possesses a Sylow tower [4, p. 716, vI.%l]. 

For the proof of Theorem 1 we need the following definition: A group G is called 

a (p,q)-group if: 
(a) The order of G involves only the prime factors p and 17. 
(b) G is not nilpotent and all its proper subgroups are nilpotent. 
(c) The derived group G’ is the p-Sylow subgroup of G. 
We refer the reader to [4, p. 281, Theorem 5.21 for the standard propc . ties of a 

(P, qhiw-w. 
The following lemma is an immediate consequence of Ito’s Theorem [4, p. 434, 

Theorem 5.41. So the proof will be omitted here. 

Lemma 1. Let p be a fixed prime in ~(6 ). Then G possesses a normal p-complement 
iff G contains no ( p, q)-subgroup Vq E z(G) with q +p. 

Theorem 1 is an immediate consequence of the following lemma: 

Lemma 2. Suppose that each subgroup of order p2, where p is the smallest prime 
in n(G), is normal in G. Then G has a normal p-complement or A4 is involved in 
G. 

Proof. Let G be a counterexample. Then, by Lemma 1, G contains a (p, q)- 
subgroup K. Since Aj is not involved in K, then jPl =p’, where PE Syl,(K) and 

n 2 3. Now, we shall make use of the properties of minimal nonnilpotent groups to 

be found in [3] (see also [4, p_ 283, 111.5.21). Clearly P contains a subgroup H of 
order p2. So the hypothesis of the lemma implies that Ha G and consequently 
Ha K. If P’ = 1, then K/H would be nilpotent. But then K would itself be nilpotent, 
a contradiction. Thus P’f 1. We have tha P’= Z(P) is elementary abelian. 

If p = 2, then Exp P= 4. Hence there exists an element x of P of order 4 such that 
x@ P’. The hypothesis of the lemma implies that (x) aG and consequently (x) aK. 
Set L =(x)P’. If L =P, then F/P’~(x)/(x)AP’=(x)/(x)AZ(P). Now it follows 
that 1 P/P’\ = 2 (and this is impossible. Thus L c P. Obviously, ,!, a K. Now the struc- 
ture of K yields K/L must be nilpotent. But then K would itself be nilpotent, a 
contradiction. 

Now, we may assume that pf 2. Exp P=p and P’# 1. Then P contains an ele- 

ment .Wp’. It is clear that 1x1 =p. Then x lies in a subgroup H of P of order p2. 
Hence HSC P’. If L = P, then lP/P’ j =p and this is impossible. Thus L < P. NOW the 
structure of K yields K/L must 
a contradiction. 

Theorem 2. If G is an .Y\,-N 
supersolvable. 

be nilpotent. But then K would itself be nilpotent, 

group and A4 is not involved in G, then G is 



Proof. Let Se Sylz(G). Suppose that IS 1 = .2. Then G has a normal 2-complement 
(Theorem 4.3 of [2, p. 2521). Now Theorem 2.2 of [2, p. 2241 implies that for tzaeh 
prime p# 2, S leaves invariant some p-Sylow subgroup of G. Hence there exists a 
Hall subgroup tf of order 2p”, where p (z’ n(G). Theorem 7.2.15 of [5, p. 1581 
implies that H is supersolvable. Then H possesses a subgroup H, = S(y) of order 
2p. Since G is an .+N group, H, aG. Now Frattini argument yields G = 
(y)N,(S). Set N=&(S). Once again Theorem 7.2.15 of [S, p. 1581 implies that 
we may assume n(N) contains an odd prime r#p. Let ZE N such that I:/ = r. 
Since G is an .+N group, (z)Sa G. Since Schar(z)SaG, Sa G. Let x be an 
arbitrary element of G of odd prime order. Since G is an .Q-N group, (x>Sa G. 
Since (x) char(x)% G, (x) a G. Thus G is a PN- 1 group. Now Theorem 2 of [6] 
implies that G is supersolvable. 

Now we may assume that (S I= 2”, where n 12. Let x be an element of order 2. 
Then x lies in a subgroup H of G of order 4. Since G is an HZ-N group, HaG. Let 
y be an element of odd prime order. Since Aj is not involved in G, [fi, ,rg] = 1 and 
[x, y] = 1. Since (x> char(x){ y) a G and ( y:) charW( Y> 4 G, it follow that W a G 
and (y)a G. Thus, G is a PN-1 group. WC conclude therefore from Theorem 2 of 
[6] and Lemma 2 that G is supersolvable. 

The proof of @Jur next result is similar to that of Theorem 2. So the proof will 
be omitted here. 

Theorem 3. If G is an .x2-N group and q = 1 (mod p) for some prime q E z(G ). ,rhe)rr 
G is supersolvable. 

Theorem 4. If G is an **i-N group, then G’ is nilpotent. 

Proof. Let S be a 2-Sylow subgroup of G. If /S / = 2, then G is supersolvable (see 
first paragraph of proof of Theorem 2). Now Theorem 9.1 of [4, p. 7 161 implies 
that G’ is nilpotent. Once again Theorem 2 implies that 3 1 j G I. 

Now we may assume that IS I=2”, where nr2. Either /n(C): r3 or ‘n(G) = 2. 
If Irr(G)lz3, lety be an element of prime order p, where p~2. and p# 3. Let s 
be an element of order 2. Then x lies in a subgroup H of order 3. Since G is an 
.v/,-N group, HaG. Hence [H, y] = 1 and [x, y] = 1. Since (A-) char(s){ y> 4 G and 
(y) char(x){ y>a G, (x) a G and (y>a G. Let .z be an element of order 3. Since 
(x)(z>aG and (z) char(x)(z), it follows that (z)aG. It is clear that G’c C&s)) 
for any element x of order 4. Now we have G’s &((x)) for any element A- of order 
4 or a prime. By Theorem 5.5 of [4, p. 4351, it follows that G’ is nilpotenr . Xf 

1 n(G)1 = 2, then I G I = 2”3”. Hence G is solvable (Theorem 7.3 of [4, p. -Ml!!. 
Let L be a minimal normal subgroup of G. Clearly L is elementar:; abelian. 
Suppose that IL( = 3’. Let x be an element of order 2. Then x lies in a normal 
subgroup H of order 4. Let y be an element of L of order 3. Then [H, L] = 1 and 
[x, y] = 1. Since (x) char-(x)( y> a G, (A-) a G. Let : be an element of G of order 3. 
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Since (2) char(x)(z)aG, (z)aG. Now, we have G?K’&x>) for any element x of 
order 4, 2 or 3 and consequently G’ is nilpotent. Hence, we may assume that 
IL I= 2’. Since G is an .+N group and L i a minimal normal subgroup, 1 L I= 2 or 
4. If !LI=2, th en G’IC~((X)) for every element x or order 4, 2 or 3 and conse- 
quently G’ is nilpotent. Assume that IL I = 4. We argue that L is the 2-Sylow 
subgroup of G. Suppose false. Then G contains a subgroup K >L of order 2’. 
Since L is elementary abelian, K contains a maximal subgroup L, #L. Since G is 
an &-group, L1 a G. But now L1 AL is a normal subgroup of G of order 2, contra- 
dicting the minimality of L. Thus L is the 2-Sylow subgroup of G. If 3 / IC&)I, 
then G’r:C&(x)) for every element x of order 4, 2 and 3 and consequently G’ is 
nilpotent. Hence L = CG(L). Now it follows easily that GSA, and consequently G’ 
is nilpotent. 

Theorem 5. If G is an X,-N group, then G’ is nilpotent. 

Proof. Let I[i be a p-Sylow subgroup of G, where p is the smallest odd prime in 
n(G). Suppose that I PI =p. Set N=N,(P). If P<N, then N contains an element 
y of prime order q#p. Since G is an ~‘2 -N group, ( y)P a G. Since P char P( y} a G, 
PaG. Now, it follows that G is a PN-I group. By Theorem 5.3 of [4, p. 2831, G’ 
is nilpotent. Hence we may assume that P= Iv. Thus G is a Frobenius group wi,? 
complement P and kernel K. Theorem 3.1 of (2, p. 3391 implies that K is nilpotent. 
Now, it follows easily that G’ is nilpotent. 

Suppose that ] P I =p”, where n 2 2. Let x be an element of order p. Then x lies in a 
normal subgroup II of order p’. Let y be an element of prime order q#p. Theorem 
4.3 of [2, p. 2521 implies that [H, y] = 1 and [x, y] = 1. Since (x) char(x){ y) a G and 
(y) char(x){ y) a G, it follows that (x) a G and (y) a G. Thus G is a PN-1 group. 
Once again Theorem 5.3 of [4, p. 2831 implies that G’ is nilpotent. 

In [1], Narasimha and Deskins proved that if G is a PN-2 group, then G’ is nil- 
potent. Theorems 4 and 5 generalize this result. 

Lemma 3. If ,+ is empty, then 1 G 1 is the product of at most three primes not 
necessarily distinct. 

Proof. Assume that G is no< a 2-group. It is clear that if G is a 2-group, then 
IG IS 23. Let S be a 2-Sylow subgroup of G. Since .Wj is empty, IS i 54. 

If 1s ( = 2, then G - SK, where K is a normal subgroup of G of odd order 
(Theorem 4.3 of [2, p. 2521). Theorem 2.2 of [2, p. 2241 implies that for each prime 
p+2, S leaves invariant some p-Sylow subgroup of G. Hence if there exists a p- 
Sylow subgroup P of G of order p”, where n 12, then G contains a Hall subgroup 
L of orda?r 2p*. Theorem 7.2.15 of [5, p. 1581 implies that L is supersolvable. 
Theorem 1 of 17, p. 2791 implies that L contains a subgroup L1 of order 2~‘. Since 
.fj is empty, I G I = 1 Ll I= 2~‘. Now we may assume that K is of square free order. 
It follows easily that 1 G I = 2p or 2pq, where 2, p and q are distinct primes. 



Suppose that IS I= 4. Since w .1 is empty, N,;(S) = Cc;(S) =S. Thus, G = SK, 
where K is a normal subgroup of G of odd order. It is clear that G contains a 
subgroup L of order 21 K I. The preceding paragraph implies that 1 L j = 2p or 2~67, 
where 2, p and Q are distinct primes. Since .+ is empty and C <G, IL I= 2p and 
consequently 1 G I= 22p. 

Theorem 6. If G is n .w,-N group, then G’ is nilpotent. 

Proof. Let G be a counterexample. Let S be a 2-Sylow subgroup of G. Set ;S i = Y, 

where II 11. 
Case 1. Suppose that n = 1. By Theorem 4.3 of [2, p. 2521, G has a normal 

2-complement and so 2-t IG’I. If SaG, then G/S is an X,-N group. By Theorem 

5 (G/S)‘= G’S/S~G’/G’/\S= G’ is nilpotent, a contradiction. Thus, S is not 

normal subgroup of G. It is very well known that if G is of square free order, then 

G is supersolvable, and consequently G’ is nilpotent. Since G’ is not nilpotent, so 
G contains a p-Sylow subgroup P of order p”‘, where rn > 2 and p # 2. Since G has 

a normal 2-complement, Theorem 2.2 of [2, p. 2241 implies that for each prime 

pf2, S leaves invariant some p-Sylow subgroup of G. Thus there exists a Hall 

subgroup H of order 2pm, where m12. Now, Theorem 7.2.15 of [5, p, I%] im- 
plies that H is supersolvable. Then H possesses a subgroup L of order 2,~’ [?, 

Theorem 1, pm 279). Let Pi be a p-Sylow subgroup of L. Since G is an +N group, 

L a G. Now Frattini’s argument yields G = PI N,(S). Let r be an odd prime such 
that r 1 iNG(S)I. If r2 1 ING(S)I, then No(S) contains a subgroup M of order 3.‘. 
Since G is an .v/,-N group, MaG and consequently SaG, a contradiction. Thus 

N&) is of square free order. If ~TI(N&))~:z~, then N,(S) contains a subgroup 
K of order 2r,r2, where 2, rl and r2 are distinct primes. Since G is an q-N group, 

KaG, a contradiction. Thus 1 n(N,(S))I I 2. Since G’ is not nilpotent and 

IJwGw % w’: have IN&)1 = 2r, where .2, r and p are distinct primes. Now, 

it follows easily that fG I = 2rp’ and consequently G’ is nilpotent, contradiction. 
Case 2. Suppose that n =2. We argue that S is not a normal subgroup of G. 

Suppose false. Then Theorem 2.1 of [2, p. 2211 implies that there exists a :I- 
complement K of G, KS G/S. It is clear that K is a PN- 1 roup. Now Theorem 5. ! 
of [4, p. 2831 implies that (G/S)‘= G’S/% G’/G’A S is nilpotent. Let s be an 
element of G of order a prime p, where p#2 ,and pf3. Theorem 4.3 of [2, p. 2521 
implies that S(X) = Sx(x>. Since G is an ,w,-N group, S(s>aG and consequentlj 
(x) a G. But now G/(x) is an .+N group. Theorem 4 implies that (G (.v)Y == 

G’(X)/(X) z G’/G’ A (x) is nilpotent. Since G’ is not nilpotent and (A-) =p, 
G’/G’A(x) = G’/(X). But G’/(G’AS)A(X) C G’/G’AS x G’/(x)9 so G’ is nilpotent, a 
contradiction. Hence n(G) = {2,3}. If C,(S) := G, then SrZ(G) and consequently 
G is nilpotent, a contradiction. Thus C,(S) c G. Let x be an element of C,;(S) of 
order 3. Then, S(x) = Sx(x). Since G is an +-N group, S(.u)aG and consequentI> 
(x) a G. Since G’/(x) and G’/G’AS are nilpotent, G’ is nilpotent, a contradiction. 
Hence C,(S) = SC G. Clearly S is elementary abelian. Since G/C,,(S)~ Aut(S), 
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lAut(S)I =6, C&)=S and x(G)= {2,3}, it follows that GSA, and consequently 
G’ is nilpotent, a contradiction. Thus S is not a normal subgroup of G. Set 
N=&.(S). If S<N, then N contains an element x of order a prime p #2. Since G 
is an &-N group, (x)S a G. Since S char S(x)4 G, Sa G, a contradiction. Hence 
N=S= Cc(S). Now, Theorem 4.3 of [2, p. 2521 implies that G has a normal 
2-complement and consequently A4 is not involved in G. Suppose that SAY% 1 for 
some XE G-N. Then SiW=(y), where 1 yl = 2. Set A$ = A$# y}). if N, = G, then 
( y) a G. Since G is an .tij-N group, G/(j) is an .H2-group. Theorem 2 implies that 
G/( y} is supersolvable and consequently G is supersolvable. Now, Theorem 9.1 of 
[4, p. 7161 implies that G’ is nilpotent, a contradiction. Thus (y) is not a normal 
subgroup of G. It is clear that A$ contains an odd prime r. Let z be an element of 
A$ of order r. Obviously N1 is solvable. Since (y> 1s not a normal subgroup and 
G is an $-group, it follows that r 1 IN, I. Since N, is solvable, A$ contains a 
Hall subgroup L = S,(z), where (S, I= 4 and lzl= r (Theorem 4.1 of 12, p. 2311). 
Since G is an .%j-N group, L aG. Since G has a normal 2-complement, (2) char L. 
Since (z) char LaG, (z>aG. But then G/(z) is an .+N group. Now, Theorem 2 
implies that G/(z) is supersolvable and consequently G is supersolvable. Hence G’ 
is nilpotent, a contradiction. Thus S/W= 1 for each element XE G-N. Now, it 
follows that G is a Frobenius group with complement S and kernel K. Theorem 3.1 
of j2, p. 3393 implies that K is abelian. Now, it follows easily that G’ is abelian, a 
contradiction. 

Case 3. Suppose that n> 3. Let G denote a counterexample of least possible 
order. Lemma 3 and our choice of G imply that each proper subgroup of G 
is solvable. Let L be a minimal normal subgroup of G. Now it follows easily 
that J!AG and L is an elementary abelian p-group for some prime p (Theorem 
1.5 of [2, p. 171). Suppose that p#2. Let S, be a subgroup of S of order 23. 
Since G is an .$-N group, S, aG. Let YE L. Let S2 be a maximal subgroup of 
S1. Since [S,, L] = 1, [&, y] = 1. Since G is an .wj-N group, S2 )(I ( y)aG. Since 
( y) char ( y)S2 a G and S2 char{ y)S2 a G, ( y) a G and S2 a G. It is clear that G/S2 
is a PN-1 group. Theorem 5.7 of [4, p. 4361 implies that 

(G/S2)’ = G’S2/S2 z G’/G%S, = S*/G%S,. WG’AS,, 

where S*/G’AS, is a normal 2-Sylow subgroup of G’/GW$ and K/G’AS2 is nil- 
potent subgroup of G’/G’AS2 of odd order. Now, it follows that G’/S* is nil. 
potent. Since G is an .+N group, it follows that G/(y) is an .r/;-N group. 
Theorem 4 implies that (G/(y))’ is nilpotent. Since G’ is not nilpotent and 1 y1 =p, 
(G/(y))’ = G’/(y). Since G’/S* and G’/( _Y) are nilpotent, G’ is nilpotent, a con- 
tradiction. Thus we must have p=2. Since L is a minimal normal subgroup of G 
and G is an .I+N group, (L) II 23. 

Subcase 1. Suppose that IL I = 2. Then G/L is an .X$-N group. Theorem 4 implies 
that (G/L)‘= G’L/L is nilpotent. Since G’ is not nilpotent and IL I = 2, it follows 
that G’/L is nilpotent. Since G’/L is nilpotent and IL I = 2, it follows that G’ is nil- 
potent, a contradiction. 



Sdxx~se 2. Suppose that / L / = 4. Since G is an al-N group, G./L is a PN- 1 

group. Theorem 5.7 of [4, p. 4361 implies that 

(G/L)‘=G’L/L~G’/G’nL=SVG’r\L~ M/G’nL 

where S*/G’L’ is a normal 2-Sylow subgroup of G’/G%L and M/G%L is a nil- 

potent subgroup of ~‘/G’A L of odd order, NOW, it follow< that G’/S* is nilpotent. 

Let s be an element of G of order a prime y, where p + 2 and p f 3. Since G IS 
an +-group, L(x)QG. By Theorem 4.3 of [2, p. 2521, L(x) - L x(x). Since 

(x) char(x)L QG, (x>aG. Since G is an .+-N group, G/(x) is an +N group. 

Theorem 4 implies that (G/(x))‘= G’(x)/(.Y)~ G’/C?!(X) is nilpotent. Since 

G’/G’A(x) = G’/(X). Since G’/S* and G’/(S) are nilpotent, G’ is nilpotent, a con- 

tradiction. Thus, z(G)=(2,3}. Set C=&(L). Suppose tha: 3/ ]C,;(L): =C. 
Then C contains an element y of order 3. Since L(y) = L x (y) a G, ( _y> a G. NCM 
we have that G’/(y) and G’/S* are nilpotent, so G’ is nilpotent, a contradiction. 

Thus, 3f [Cl. Since G/C$Aut(L) and 3 7 ICI, it follows that iG j = 2’ - 3. Let S be 
a 2-Sylow subgroup of G. since G is an .q-N group, Sa G. Since iG I= 2’ - 3 and 

S a G, G’ is nilpotent, a contradiction. 

Subcuse 3. Suppose that 1 L I= 23. We argue that L is a 2-Sylow subgroup of G. 

Suppose false. Then there exists a subgroup L*F> L of order 2“. Since L is e?emen- 

tary abelian, L* contains a maximal subgroup LI #L. Since G is an 7+-N group, 

L, aG. It follows that L, AL is a normal subgroup of G of order 3, contradicting 

the minimality of L. Thus L is a 2-Sylow subgroup of G. Set C = C<;(L). Let _V be 

an element of C of order a prime p, where y#2. Let K be a maximal subgroup of 

L. Since [L, y] = 1, [K, y] = 1. Since G is an .q-N group, K( y) a G. Sinc*e 
K char K(y) a G, K a G, contradicting the minimality of L. Thus C = Cc;(L) = 1.. 
Since G/C$Aut(L)rGL(3,2) and /GL(3,2)1= 168 and C= L, it follows that 

1 G ) = 24, 56 or 168. Since G’ is not nilpotent, I G j f 24 or 56. Since G is an +% 

group and G’ is not nilpotent, it follows that 1 G 1 f 168. This contradiction com- 

pletes the proof of the theorem. 

In [I], Narsimha and Deskins proved that if G is a PN-3 group, then G is sol\,able 

and Feit(G) s 3. 

For the proof of the next lemma, see [4, Theorem 8.27 (Dichson), p. 2131. 

Lemma 4. Set Gr L2(q), where q is an odd prime powrr md q = 3, 5 (mock S). 
Asstrme that .w4 is empty Then 

(1) GzL,(S)rA,, or 
(2) G = L,(p), where p is a prime srrch thtrt p - 1 and p A- 1 m-e produc~ts of’ clt 

most 3 primes, p= 3, 5 (mod 8) and p’ - 1 +.O (mod 5), or 

(3) G= L,(q), where q = 32t’f ’ such that q - I and q + I m-e products of‘ CJI ~WSC 
3 primes ur4 q=3, 5 (mod 8). 

We shall prove the foilowing result: 
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Theorem 1. if G is n X,-N group, then one of the following holds: 
(i) G is solvable, or 

(ii) G is isomorphic to (1) or (2) or (3) in the statement of Lenma 4. 

Proof. Let G be a counterexample. Let S be a 2-Sylow subgroup of G. Set 
ISI =2”, nr 1. 

Case 1. Suppose that n 24. Let H be a subgroup of S of order 2’. Since G is an 
.xh-N group, 1F;IaG. If H is non-abelian, then 12(H)! = 2 or 4. Since G is an .vj-N 
group, G/Z(H) is either an X,-N group or an .+N group. Now, Theorems 6 and 
4 yield that G/Z(H) is solvable and consequently G is solvable, a contradicton. 
Thus, H is non-abelian. If H is cyclic, let L be a subgroup of H of order 4. Since 
L char H <I G, L a G. Since G/L is an .Y~-N group, G/L is solvable and consequent- 
ly G is solvable, a contradiction. Thus, H is non-cyclic abelian. We argue that 
S = N. Suppose false. Then there exists a subgroup S, > H of order 25. Since St is 
non-cyclic, there exists a maximal subgroup K of Si such that H+ K. Since G is an 
wh-N group, K aG. 

Now, it follows easily that HAK is a normal subgroup of G of order 2”. Hence, 
G/HM is a PN-I group. By Theorem 5.7 of [4, p. 4361, G/HA K is solvalbe and 
consequently G is solvable, a contradiction. Thus H = S. Here we shall not make 
use of the Feit-Thompson Theorem [S]. It is clear that we have four types of non- 
isomorphic non-cyclic abelian groups: 

(22,2’), (2,2”), (2,2,22) and (2,2,2,2). 

Suppose that S is not elementary abelian. Then G,(S) is elementary abelian of 
order 4 or 8. Clearly, Q,(S) a G. Since G is an .+N group, GA&(S) is either an 
*r/,-N group or a PN-1 group. Thus, G/&(S) is solvable, and consequently G is 
solvable, a contradiction. Now, we may assume that S is elementary abelian. Let 
y be an element of Co(S) of prime odd order. Then [S, y] = 1 l let SI be a maximal 
subgroup of S. Then, [S,, y] = 1. Since G is an .wd-N group, S,( y)aG and conse- 
quently, S, a G. Since G/S1 is a PN-1 group, G/S, is solvable and consequently G 
is solvable, a contradiction. Thus, &(S) = S. Since G/C,(S&Aut(S) and 
IAut(S)/=26x32x5x7and C,(S)=S, it follows that IGl/lSl 132~5~7. Now, it 
follows easily that G is solvable, a contradiction. 

Case 2. Suppose that n= 3. Set N=&(S). If SaG, then G/S is a PN-1 group. 
Hence, G/S is solvable and consequently G is solvable, a contradiction. Thus, 
NC G. If S< N, let y be an element of N of prime odd order. Since G is an .w,-N 
group, S(y) a G and consequently Sa G, a contradiction. Thus Iv= S. We argue 
that S, is not involved in G. Suppose false. Then, there exist subgroups H > K such 
that H/KG &. If 3t I K I, then the Schur-Zassenhaus Theorem implies that 
H=KL, where L zS,. Since G is an .w,-N group, L a G. Now Frattini’s argument 
yields that G = L&(S) = L z S,, a contradiction. Thus 3 1 IX I. Let Q be a 3-Sylow 
subgroup of K. If IQ I= 3, let L/K be a subgroup of H/K of order 23. It is clear 
that L has a normal 2-complement and consequently L contains a I-tall subgroup 



L, of order 233. Let S, be a 2-Sylow subgroup of L,. Let Q, be a 3-Sybw s~~h~roup 

of L ,. Since G is an w,-group, L, = S, Q, Q G and consequently Q, a G. Since G/Q, 

is an .x,-N group, G/Q, is solvable and consequently G is solvable, a contradic- 
tion. Thus j Q I# 3. Suppose that 1 Q I= 32. Let L/K be a subgroup of H/K of order 
4. Then L contains a Hall subgroup L, of order 2’3’. Now it follows easily that 
SI 4 LI or Q, 4 L,, where S, andl Q1 are 2-and 3-Sylow subgroups of L, , respective- 
ly. Since G is an I,-N group, L, aG. Hence either S, a G or Q, 4 G. Thus G/S, is 
an .+N group or G/Q, is an .r/,-N group. This is a contradiction. Now suppose 
that IQ I = 3”, where nz 3. Let L/K be a subgroup of G/K of order 2. Since L has 
a normal 2-complement, L contains a Hall subgroup L, of order 23”. Since L, is 
supersolvable, L, contains a subgroup L2 of order 23”. Let Sz be a 2-Sylow sub- 
group of Lz. Let Qz be a 2-Sylow subgroup of L?. Since G is an .;Y~-N group, Lz <I G 
and consequently Qz aG. Now, it follows that each element of G/Q: of order 2 
is normal. This is a contradiction as S, contains a dihedral group of order 8. 
Thus Sd is not involved in G. Now a Theorem of Glauberman [9] implies that G 
has a normal 2-complement, i.e. G = SK, where K is a normal subgroup of G of odd 
order. Let y be an element of S of order 2. Set G, =( y)K. Suppose that CY is a 
prime divisor of IK I with multiplicity at least 3. it is clear that G, contains a Hall 
subgroup L, of order 2$, where n ~3. Since L, is supersolvable, L l contains a 
subgroup L2 of order 2q3. Since G is an .w~-N group, Lz a G. Now Frattini? argu- 
ment yields that if G = L,N,(( y))/( y) is an .P,-N group, then N&y)) is so,lvable. 
Hence G is solvable, a contradiction. Thus each prime divisor of j Ii’ / appears with 
multiplicity at most 2. Now by a very well known result in the literature it follows 
that K possesses a Sylow tower and consequently K is solvable. Since G/A’ z 5, and 
K is solvable, G is solvable, a contradiction. 

Case 3. Suppose that n =2. If SaG, then G/SzK is a +-N group. Now 
Theorem 5 implies that K is solvable, a contradiction. Thus N,;(S)< G. It follows 
from the proof of Case 2 that if G has a normal 2-complement, G is solvable. Thus 
G has not a normal 2-complement. Now Burnside’s Theorem implies that 
C,(S)< N&S). Now it follow; easily that C,(S) = S. Let Cd(G) be the largest nor- 
mal subgroup of odd order in the group G. By Theorem 2.1 of [2, p. 3211, G.e’O(G) 
is isomorphic to L2(4), 4 = 3, S(mod 8). We argue that O(G) = 1. Suppose false. Let 
L/O(G) be a subgroup of G/O(G) of order 2. It is clear that L has a normal 
2-complement. Hence if q3 1 IO(G)1 for some prime divisor 4 of IO(G):, then L 
contains a Hall subgroup L, of order 24’l, where 112 3. Since L , is supersolvable, 
there exists a subgroup L2 of L, of order 24’. Since G is an YJ-N group, L: aG. 
contradicting the simplicity of G/O(G). Thus each prime di+or of O(G) al-,pears 
with multiplicity at most 2. Hence O(G) possesses a Sylow tower. Let P be a t)- 
Sylow subgroup of O(G), where p is the largest prime in n@(G)). Ther, PaG. 
Clearly (PI =p or p”. Hence G/P is an X,-N group or an a:-N group, a contradic- 
tion. Thus O(G) = 1. Now Lemma 4 yields that G is isomor ahic to (1) or (22 or (3). 
a contradiction. 
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Case 4. Suppose that n = 1. Then G = SK, where K is a normal subgroup of G of 
odd order. Suppose that there exists a prime divisor 4 of 1 K 1 which appears with 
multiplicity at least 3. Hence G contains a subgroup L of order 24’. Since G is an 
.wh-4 group, L Q G. Let y be an element of L of order 2. Frattini’s argument yields 
that G =LN,(( y)). It is clear that N= (y) x Lt , where Lt is a normal subgroup of 
N of odd order. If ( y> is not a normal subgroup of G, then IL, 1 is the product of 
at most 2 primes and consequently G is solvable, a contradiction. Thus ( y) = S Q G. 
let Q be the q-Sylow subgroup of t. Then Qa G. Let Qt be a subgroup of Q of 
order 4’. If Q is cyclic, then Qt aG. Hence G/Qt is an .+N group, a contradic- 
tion. Thus, Q is not cyclic. We argue that Q is the q-Sylow subgroup of G. Suppose 
false. Then there exists a subgroup H> Q of order q4. Since H is not cyclic, H con- 
tains a maximal subgroup QO such that Q&Q. Since G is an .f;-N group, 
( y)QO a G and consequently QO a G. It follows that Qo~Q is a normal subgroup of 
G of order 4’. Thus G/Q,/\Q is an .+N group, a contradiction. Thus Q is a nor- 
mal q-Sylow subgroup of G. If there exsts a prime divisor r fq of IK 1 which appears 
with multiplicity at least 3, then R QG, where R is an r-Sylow subgroup of G of 
order r3. Now it follows easily that SQR is a normal nilpotent subgroup of G. Let 
K be a subgroup of SQR of order 2rq2. Let Qt be the q-Sylow subgroup of K. 
Since G is an .+N group, Qt aG. But then G/Q, is an .Y,-N group, a contradic- 
tion. Thus q is the only prime divisor of livl appearing with multiplicity 3. Now 
the Schur-Zassenhaus Theorem implies that K/Q= K1, where K, is a subgroup of 
K and K = QIK,. Now, it follows that K, possesses a Sylow tower as each prime 
divisor of ] K1 I appears with multiplicity at most 2. Thus K, is solvable and conse- 
quently K is solvable, a contradiction. Therefore, each prime divisor of i K I appears 
with multiplicity at most ?. Thus K is solvable, a final contradiction. 

It was proved in Janko [IO] that if G is a finite non-abelian simple group all of 
whose chains of subgroups have length at most 4, then G is isomorphic to L2(p) 
for some prime p> 3. This result follows at once from Theorem 7. 
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